Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/144/19/10.1063/1.4951010
1.
J. A. V. Butler, D. W. Thomson, and W. H. Maclennan, J. Chem. Soc. 1933, 674.
http://dx.doi.org/10.1039/jr9330000674
2.
R. F. Lama and B. C.-Y. Lu, J. Chem. Eng. Data 10, 216 (1965).
http://dx.doi.org/10.1021/je60026a003
3.
S. Chowdhuri and A. Chandra, J. Chem. Phys. 123, 234501 (2005).
http://dx.doi.org/10.1063/1.2137702
4.
R. Behrends, K. Fuchs, U. Kaatze, Y. Hayashi, and Y. Feldman, J. Chem. Phys. 124, 144512 (2006).
http://dx.doi.org/10.1063/1.2188391
5.
T. J. F. Day and G. N. Patey, J. Chem. Phys. 110, 10937 (1999).
http://dx.doi.org/10.1063/1.479030
6.
W.-P. Hsieh and Y.-H. Chien, Sci. Rep. 5, 8532 (2015).
http://dx.doi.org/10.1038/srep08532
7.
M. Matsumoto, Y. Takaoka, and Y. Kataoka, J. Chem. Phys. 98, 1464 (1993).
http://dx.doi.org/10.1063/1.464310
8.
E. C. Meng and P. A. Kollman, J. Phys. Chem. 100, 11460 (1996).
http://dx.doi.org/10.1021/jp9536209
9.
T. Ono, K. Horikawa, Y. Maeda, M. Ota, Y. Sato, and H. Inomata, Fluid Phase Equilib. 420, 30 (2016).
http://dx.doi.org/10.1016/j.fluid.2015.12.010
10.
F. Teorica, U. Messina, M. Haughney, I. R. McDonald, and M. L. Klein, J. Chem. Phys. 93, 5156 (1990).
http://dx.doi.org/10.1063/1.458652
11.
F. Mallamace, C. Corsaro, D. Mallamace, C. Vasi, S. Vasi, and H. E. Stanley, J. Chem. Phys. 144, 064506 (2016).
http://dx.doi.org/10.1063/1.4941414
12.
T. Ono, R. Amezawa, A. Igarashi, M. Ota, Y. Sato, and H. Inomata, Fluid Phase Equilib. 407, 198 (2016).
http://dx.doi.org/10.1016/j.fluid.2015.07.012
13.
A. Ghoufi, F. Artzner, and P. Malfreyt, J. Phys. Chem. B 120, 793 (2016).
http://dx.doi.org/10.1021/acs.jpcb.5b11776
14.
H. S. Frank and M. W. Evans, J. Chem. Phys. 13, 507 (1945).
http://dx.doi.org/10.1063/1.1723985
15.
A. Laaksonen, P. G. Kusalik, and I. M. Svishchev, J. Phys. Chem. A 5639, 5910 (1997).
http://dx.doi.org/10.1021/jp970673c
16.
T. S. van Erp and E. J. Meijer, J. Chem. Phys. 118, 8831 (2003).
http://dx.doi.org/10.1063/1.1567258
17.
H. Tanaka and K. E. Gubbins, J. Chem. Phys. 97, 2626 (1992).
http://dx.doi.org/10.1063/1.463051
18.
T. A. Pascal and W. A. Goddard, J. Phys. Chem. B 116, 13905 (2012).
http://dx.doi.org/10.1021/jp309693d
19.
S. Allison, J. Fox, R. Hargreaves, and S. Bates, Phys. Rev. B 71, 024201 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.024201
20.
S. P. Benson and J. Pleiss, J. Mol. Model. 19, 3427 (2013).
http://dx.doi.org/10.1007/s00894-013-1857-1
21.
G. Matisz, A.-M. Kelterer, W. M. F. Fabian, and S. Kunsagi-Mate, Phys. Chem. Chem. Phys. 17, 8467 (2015).
http://dx.doi.org/10.1039/C4CP05836D
22.
G. Palinkas, E. Hawlicka, and K. Heinzinger, Chem. Phys. 158, 65 (1991).
http://dx.doi.org/10.1016/0301-0104(91)87055-z
23.
A. Wakisaka, H. Abdoul-Carime, Y. Yamamoto, and Y. Kiyozumi, J. Chem. Soc., Faraday Trans. 94, 369 (1998).
http://dx.doi.org/10.1039/a705777f
24.
K. N. Woods and H. Wiedemann, J. Chem. Phys. 123, 134507 (2005).
http://dx.doi.org/10.1063/1.2000239
25.
K. R. Wilson, M. Cavalleri, B. S. Rude, R. D. Schaller, T. Catalano, A. Nilsson, R. J. Saykally, and L. G. M. Pettersson, J. Phys. Chem. B 109, 10194 (2005).
http://dx.doi.org/10.1021/jp049278u
26.
N. Micali, S. Trusso, C. Vasi, D. Blaudez, and F. Mallamace, Phys. Rev. E 54, 1720 (1996).
http://dx.doi.org/10.1103/PhysRevE.54.1720
27.
S. Dixit, J. Crain, W. C. K. Poon, J. L. Finney, and A. K. Soper, Nature 416, 829 (2002).
http://dx.doi.org/10.1038/416829a
28.
L. Dougan, S. P. Bates, R. Hargreaves, J. P. Fox, J. Crain, J. L. Finney, V. Reat, and A. K. Soper, J. Chem. Phys. 121, 6456 (2004).
http://dx.doi.org/10.1063/1.1789951
29.
A. K. Soper, L. Dougan, J. Crain, and J. L. Finney, J. Phys. Chem. B 110, 3472 (2006).
http://dx.doi.org/10.1021/jp054556q
30.
A. K. Soper and J. L. Finney, Phys. Rev. Lett. 71, 4346 (1993).
http://dx.doi.org/10.1103/PhysRevLett.71.4346
31.
N. Nishi, S. Takahashi, M. Matsumoto, A. Tanaka, K. Muraya, T. Takamuku, and T. Yamaguchi, J. Phys. Chem. 99, 462 (1995).
http://dx.doi.org/10.1021/j100001a068
32.
I. Bako, P. Jedlovszky, and G. Palinkas, J. Mol. Liq. 87, 243 (2000).
http://dx.doi.org/10.1016/s0167-7322(00)00124-0
33.
J.-H. Guo, Y. Luo, A. Augustsson, S. Kashtanov, J.-E. Rubensson, D. K. Shuh, H. Ågren, and J. Nordgren, Phys. Rev. Lett. 91, 157401 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.157401
34.
M. Nagasaka, K. Mochizuki, V. Leloup, and N. Kosugi, J. Phys. Chem. B 118, 4388 (2014).
http://dx.doi.org/10.1021/jp4091602
35.
S. Kashtanov, A. Augustson, J.-E. Rubensson, J. Nordgren, H. Agren, J.-H. Guo, and Y. Luo, Phys. Rev. B 71, 104205 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.104205
36.
T. Sato, A. Chiba, and R. Nozaki, J. Chem. Phys. 112, 2924 (2000).
http://dx.doi.org/10.1063/1.480865
37.
T. Sato, A. Chiba, and R. Nozaki, J. Chem. Phys. 113, 9748 (2000).
http://dx.doi.org/10.1063/1.1321767
38.
T. Sato and R. Buchner, J. Chem. Phys. 119, 10789 (2003).
http://dx.doi.org/10.1063/1.1620996
39.
T. Sato, A. Chiba, and R. Nozaki, J. Chem. Phys. 110, 2508 (1999).
http://dx.doi.org/10.1063/1.477956
40.
C. Corsaro, J. Spooren, C. Branca, N. Leone, M. Broccio, C. Kim, S.-H. Chen, H. E. Stanley, and F. Mallamace, J. Phys. Chem. B 112, 10449 (2008).
http://dx.doi.org/10.1021/jp803456p
41.
Y. Ishihara, S. Okouchi, and H. Uedaira, J. Chem. Soc., Faraday Trans. 93, 3337 (1997).
http://dx.doi.org/10.1039/a701969f
42.
B. M. Rankin, D. Ben-Amotz, S. T. van der Post, and H. J. Bakker, J. Phys. Chem. Lett. 6, 688 (2015).
http://dx.doi.org/10.1021/jz5027129
43.
P. N. Perera, K. R. Fega, C. Lawrence, E. J. Sundstrom, J. Tomlinson-Phillips, and D. Ben-Amotz, Proc. Natl. Acad. Sci. U. S. A. 106, 12230 (2009).
http://dx.doi.org/10.1073/pnas.0903675106
44.
Y. L. A. Rezus and H. J. Bakker, Phys. Rev. Lett. 99, 148301 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.148301
45.
K. R. Wilson, B. S. Rude, T. Catalano, R. D. Schaller, J. G. Tobin, D. T. Co, and R. J. Saykally, J. Phys. Chem. B 105, 3346 (2001).
http://dx.doi.org/10.1021/jp010132u
46.
O. Shih, A. H. England, G. C. Dallinger, J. W. Smith, K. C. Duffey, R. C. Cohen, D. Prendergast, and R. J. Saykally, J. Chem. Phys. 139, 035104 (2013).
http://dx.doi.org/10.1063/1.4813281
47.
J. W. Smith, R. K. Lam, O. Shih, A. M. Rizzuto, D. Prendergast, and R. J. Saykally, J. Chem. Phys. 143, 084503 (2015).
http://dx.doi.org/10.1063/1.4928867
48.
J. W. Smith, R. K. Lam, A. T. Sheardy, O. Shih, A. M. Rizzuto, O. Borodin, S. J. Harris, D. Prendergast, and R. J. Saykally, Phys. Chem. Chem. Phys. 16, 23568 (2014).
http://dx.doi.org/10.1039/C4CP03240C
49.
R. K. Lam, A. H. England, J. W. Smith, A. M. Rizzuto, O. Shih, D. Prendergast, and R. J. Saykally, Chem. Phys. Lett. 633, 214 (2015).
http://dx.doi.org/10.1016/j.cplett.2015.05.039
50.
R. K. Lam, A. H. England, A. T. Sheardy, O. Shih, J. W. Smith, A. M. Rizzuto, D. Prendergast, and R. J. Saykally, Chem. Phys. Lett. 614, 282 (2014).
http://dx.doi.org/10.1016/j.cplett.2014.09.052
51.
K. R. Wilson, B. S. Rude, J. Smith, C. Cappa, D. T. Co, R. D. Schaller, M. Larsson, T. Catalano, and R. J. Saykally, Rev. Sci. Instrum. 75, 725 (2004).
http://dx.doi.org/10.1063/1.1645656
52.
D. Prendergast and G. Galli, Phys. Rev. Lett. 96, 215502 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.215502
53.
E. E. Fileti, P. Chaudhuri, and S. Canuto, Chem. Phys. Lett. 400, 494 (2004).
http://dx.doi.org/10.1016/j.cplett.2004.10.149
http://aip.metastore.ingenta.com/content/aip/journal/jcp/144/19/10.1063/1.4951010
Loading
/content/aip/journal/jcp/144/19/10.1063/1.4951010
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/144/19/10.1063/1.4951010
2016-05-19
2016-12-11

Abstract

While methanol and ethanol are macroscopically miscible with water, their mixtures exhibit negative excess entropies of mixing. Despite considerable effort in both experiment and theory, there remains significant disagreement regarding the origin of this effect. Different models for the liquid mixture structure have been proposed to address this behavior, including the enhancement of the water hydrogen bonding network around the alcohol hydrophobic groups and microscopic immiscibility or clustering. We have investigated mixtures of methanol, ethanol, and isopropanol with water by liquid microjet X-ray absorption spectroscopy on the oxygen K-edge, an atom-specific probe providing details of both inter- and intra-molecular structure. The measured spectra evidence a significant enhancement of hydrogen bonding originating from the methanol and ethanol hydroxyl groups upon the addition of water. These additional hydrogen bonding interactions would strengthen the liquid-liquid interactions, resulting in additional ordering in the liquid structures and leading to a reduction in entropy and a negative enthalpy of mixing, consistent with existing thermodynamic data. In contrast, the spectra of the isopropanol-water mixtures exhibit an in the number of broken alcohol hydrogen bonds for mixtures containing up to 0.5 water mole fraction, an observation consistent with existing enthalpy of mixing data, suggesting that the measured negative excess entropy is a result of clustering or micro-immiscibility.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/144/19/1.4951010.html;jsessionid=2MVaFFLwyFNOAQckBDhYFga4.x-aip-live-03?itemId=/content/aip/journal/jcp/144/19/10.1063/1.4951010&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/144/19/10.1063/1.4951010&pageURL=http://scitation.aip.org/content/aip/journal/jcp/144/19/10.1063/1.4951010'
Right1,Right2,Right3,