Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
J. A. V. Butler, D. W. Thomson, and W. H. Maclennan, J. Chem. Soc. 1933, 674.
R. F. Lama and B. C.-Y. Lu, J. Chem. Eng. Data 10, 216 (1965).
S. Chowdhuri and A. Chandra, J. Chem. Phys. 123, 234501 (2005).
R. Behrends, K. Fuchs, U. Kaatze, Y. Hayashi, and Y. Feldman, J. Chem. Phys. 124, 144512 (2006).
T. J. F. Day and G. N. Patey, J. Chem. Phys. 110, 10937 (1999).
W.-P. Hsieh and Y.-H. Chien, Sci. Rep. 5, 8532 (2015).
M. Matsumoto, Y. Takaoka, and Y. Kataoka, J. Chem. Phys. 98, 1464 (1993).
E. C. Meng and P. A. Kollman, J. Phys. Chem. 100, 11460 (1996).
T. Ono, K. Horikawa, Y. Maeda, M. Ota, Y. Sato, and H. Inomata, Fluid Phase Equilib. 420, 30 (2016).
F. Teorica, U. Messina, M. Haughney, I. R. McDonald, and M. L. Klein, J. Chem. Phys. 93, 5156 (1990).
F. Mallamace, C. Corsaro, D. Mallamace, C. Vasi, S. Vasi, and H. E. Stanley, J. Chem. Phys. 144, 064506 (2016).
T. Ono, R. Amezawa, A. Igarashi, M. Ota, Y. Sato, and H. Inomata, Fluid Phase Equilib. 407, 198 (2016).
A. Ghoufi, F. Artzner, and P. Malfreyt, J. Phys. Chem. B 120, 793 (2016).
H. S. Frank and M. W. Evans, J. Chem. Phys. 13, 507 (1945).
A. Laaksonen, P. G. Kusalik, and I. M. Svishchev, J. Phys. Chem. A 5639, 5910 (1997).
T. S. van Erp and E. J. Meijer, J. Chem. Phys. 118, 8831 (2003).
H. Tanaka and K. E. Gubbins, J. Chem. Phys. 97, 2626 (1992).
T. A. Pascal and W. A. Goddard, J. Phys. Chem. B 116, 13905 (2012).
S. Allison, J. Fox, R. Hargreaves, and S. Bates, Phys. Rev. B 71, 024201 (2005).
S. P. Benson and J. Pleiss, J. Mol. Model. 19, 3427 (2013).
G. Matisz, A.-M. Kelterer, W. M. F. Fabian, and S. Kunsagi-Mate, Phys. Chem. Chem. Phys. 17, 8467 (2015).
G. Palinkas, E. Hawlicka, and K. Heinzinger, Chem. Phys. 158, 65 (1991).
A. Wakisaka, H. Abdoul-Carime, Y. Yamamoto, and Y. Kiyozumi, J. Chem. Soc., Faraday Trans. 94, 369 (1998).
K. N. Woods and H. Wiedemann, J. Chem. Phys. 123, 134507 (2005).
K. R. Wilson, M. Cavalleri, B. S. Rude, R. D. Schaller, T. Catalano, A. Nilsson, R. J. Saykally, and L. G. M. Pettersson, J. Phys. Chem. B 109, 10194 (2005).
N. Micali, S. Trusso, C. Vasi, D. Blaudez, and F. Mallamace, Phys. Rev. E 54, 1720 (1996).
S. Dixit, J. Crain, W. C. K. Poon, J. L. Finney, and A. K. Soper, Nature 416, 829 (2002).
L. Dougan, S. P. Bates, R. Hargreaves, J. P. Fox, J. Crain, J. L. Finney, V. Reat, and A. K. Soper, J. Chem. Phys. 121, 6456 (2004).
A. K. Soper, L. Dougan, J. Crain, and J. L. Finney, J. Phys. Chem. B 110, 3472 (2006).
A. K. Soper and J. L. Finney, Phys. Rev. Lett. 71, 4346 (1993).
N. Nishi, S. Takahashi, M. Matsumoto, A. Tanaka, K. Muraya, T. Takamuku, and T. Yamaguchi, J. Phys. Chem. 99, 462 (1995).
I. Bako, P. Jedlovszky, and G. Palinkas, J. Mol. Liq. 87, 243 (2000).
J.-H. Guo, Y. Luo, A. Augustsson, S. Kashtanov, J.-E. Rubensson, D. K. Shuh, H. Ågren, and J. Nordgren, Phys. Rev. Lett. 91, 157401 (2003).
M. Nagasaka, K. Mochizuki, V. Leloup, and N. Kosugi, J. Phys. Chem. B 118, 4388 (2014).
S. Kashtanov, A. Augustson, J.-E. Rubensson, J. Nordgren, H. Agren, J.-H. Guo, and Y. Luo, Phys. Rev. B 71, 104205 (2005).
T. Sato, A. Chiba, and R. Nozaki, J. Chem. Phys. 112, 2924 (2000).
T. Sato, A. Chiba, and R. Nozaki, J. Chem. Phys. 113, 9748 (2000).
T. Sato and R. Buchner, J. Chem. Phys. 119, 10789 (2003).
T. Sato, A. Chiba, and R. Nozaki, J. Chem. Phys. 110, 2508 (1999).
C. Corsaro, J. Spooren, C. Branca, N. Leone, M. Broccio, C. Kim, S.-H. Chen, H. E. Stanley, and F. Mallamace, J. Phys. Chem. B 112, 10449 (2008).
Y. Ishihara, S. Okouchi, and H. Uedaira, J. Chem. Soc., Faraday Trans. 93, 3337 (1997).
B. M. Rankin, D. Ben-Amotz, S. T. van der Post, and H. J. Bakker, J. Phys. Chem. Lett. 6, 688 (2015).
P. N. Perera, K. R. Fega, C. Lawrence, E. J. Sundstrom, J. Tomlinson-Phillips, and D. Ben-Amotz, Proc. Natl. Acad. Sci. U. S. A. 106, 12230 (2009).
Y. L. A. Rezus and H. J. Bakker, Phys. Rev. Lett. 99, 148301 (2007).
K. R. Wilson, B. S. Rude, T. Catalano, R. D. Schaller, J. G. Tobin, D. T. Co, and R. J. Saykally, J. Phys. Chem. B 105, 3346 (2001).
O. Shih, A. H. England, G. C. Dallinger, J. W. Smith, K. C. Duffey, R. C. Cohen, D. Prendergast, and R. J. Saykally, J. Chem. Phys. 139, 035104 (2013).
J. W. Smith, R. K. Lam, O. Shih, A. M. Rizzuto, D. Prendergast, and R. J. Saykally, J. Chem. Phys. 143, 084503 (2015).
J. W. Smith, R. K. Lam, A. T. Sheardy, O. Shih, A. M. Rizzuto, O. Borodin, S. J. Harris, D. Prendergast, and R. J. Saykally, Phys. Chem. Chem. Phys. 16, 23568 (2014).
R. K. Lam, A. H. England, J. W. Smith, A. M. Rizzuto, O. Shih, D. Prendergast, and R. J. Saykally, Chem. Phys. Lett. 633, 214 (2015).
R. K. Lam, A. H. England, A. T. Sheardy, O. Shih, J. W. Smith, A. M. Rizzuto, D. Prendergast, and R. J. Saykally, Chem. Phys. Lett. 614, 282 (2014).
K. R. Wilson, B. S. Rude, J. Smith, C. Cappa, D. T. Co, R. D. Schaller, M. Larsson, T. Catalano, and R. J. Saykally, Rev. Sci. Instrum. 75, 725 (2004).
D. Prendergast and G. Galli, Phys. Rev. Lett. 96, 215502 (2006).
E. E. Fileti, P. Chaudhuri, and S. Canuto, Chem. Phys. Lett. 400, 494 (2004).

Data & Media loading...


Article metrics loading...



While methanol and ethanol are macroscopically miscible with water, their mixtures exhibit negative excess entropies of mixing. Despite considerable effort in both experiment and theory, there remains significant disagreement regarding the origin of this effect. Different models for the liquid mixture structure have been proposed to address this behavior, including the enhancement of the water hydrogen bonding network around the alcohol hydrophobic groups and microscopic immiscibility or clustering. We have investigated mixtures of methanol, ethanol, and isopropanol with water by liquid microjet X-ray absorption spectroscopy on the oxygen K-edge, an atom-specific probe providing details of both inter- and intra-molecular structure. The measured spectra evidence a significant enhancement of hydrogen bonding originating from the methanol and ethanol hydroxyl groups upon the addition of water. These additional hydrogen bonding interactions would strengthen the liquid-liquid interactions, resulting in additional ordering in the liquid structures and leading to a reduction in entropy and a negative enthalpy of mixing, consistent with existing thermodynamic data. In contrast, the spectra of the isopropanol-water mixtures exhibit an in the number of broken alcohol hydrogen bonds for mixtures containing up to 0.5 water mole fraction, an observation consistent with existing enthalpy of mixing data, suggesting that the measured negative excess entropy is a result of clustering or micro-immiscibility.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd