Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/144/2/10.1063/1.4938415
1.
1.S. Vega and Y. Naor, J. Chem. Phys. 75, 75 (1981).
http://dx.doi.org/10.1063/1.441857
2.
2.L. Frydman and J. S. Harwood, J. Am. Chem. Soc. 117, 5367 (1995).
http://dx.doi.org/10.1021/ja00124a023
3.
3.R. Ernst, G. Bodenhausen, and A. Wokaun, Principles of Nuclear Magnetic Resonance in One and Two Dimensions (Oxford University Press, London, New York, 1987).
4.
4.G. Bodenhausen, H. Kogler, and R. R. Ernst, J. Magn. Reson. 58, 370 (1984).
http://dx.doi.org/10.1016/0022-2364(84)90142-2
5.
5.A. Minoretti, W. P. Aue, M. Reinhold, and R. R. Ernst, J. Magn. Reson. 40, 175 (1980).
http://dx.doi.org/10.1016/0022-2364(80)90238-3
6.
6.U. Eliav and G. Navon, J. Magn. Reson. 137, 295 (1999).
http://dx.doi.org/10.1006/jmre.1998.1681
7.
7.T. Gullion and J. Schaefer, J. Magn. Reson. 81, 196 (1989).
http://dx.doi.org/10.1016/0022-2364(89)90280-1
8.
8.C. A. Fyfe, K. T. Mueller, H. Grondey, and K. C. Wong-Moon, Chem. Phys. Lett. 199, 198 (1992).
http://dx.doi.org/10.1016/0009-2614(92)80069-N
9.
9.E. O. Stejskal, J. Schaefer, and J. S. Waugh, J. Magn. Reson. 28, 105 (1977).
http://dx.doi.org/10.1016/0022-2364(77)90260-8
10.
10.M. Pruski, A. Bailly, D. P. Lang, J.-P. Amoureux, and C. Fernandez, Chem. Phys. Lett. 307, 35 (1999).
http://dx.doi.org/10.1016/S0009-2614(99)00490-X
11.
11.K. H. Lim and C. P. Grey, Chem. Phys. Lett. 312, 45 (1999).
http://dx.doi.org/10.1016/S0009-2614(99)00884-2
12.
12.Z. Gan, Chem. Commun. 2006, 4712.
http://dx.doi.org/10.1039/b611447d
13.
13.B. Hu, J. Trébosc, and J. P. Amoureux, J. Magn. Reson. 192, 112 (2008).
http://dx.doi.org/10.1016/j.jmr.2008.02.004
14.
14.S. Cavadini, A. Abraham, and G. Bodenhausen, Chem. Phys. Lett. 445, 1 (2007).
http://dx.doi.org/10.1016/j.cplett.2007.07.060
15.
15.J. Trebosc, B. Hu, J. P. Amoureux, and Z. Gan, J. Magn. Reson. 186, 220 (2007).
http://dx.doi.org/10.1016/j.jmr.2007.02.015
16.
16.O. Lafon, Q. Wang, B. Hu, F. Vasconcelos, J. Trébosc, S. Cristol, F. Deng, and J.-P. Amoureux, J. Phys. Chem. A 113, 12864 (2009).
http://dx.doi.org/10.1021/jp906099k
17.
17.M. Deschamps and D. Massiot, Encyclopedia of Magnetic Resonance (John Wiley & Sons, Ltd., Chichester, UK, 2011).
18.
18.A. Lupulescu, S. P. Brown, and H. W. Spiess, J. Magn. Reson. 154, 101 (2002).
http://dx.doi.org/10.1006/jmre.2001.2464
19.
19.X. Lu, O. Lafon, J. Trébosc, G. Tricot, L. Delevoye, F. Méar, L. Montagne, and J. P. Amoureux, J. Chem. Phys. 137, 144201 (2012).
http://dx.doi.org/10.1063/1.4753987
20.
20.A. W. Hing, S. Vega, and J. Schaefer, J. Magn. Reson. 96, 205 (1992).
http://dx.doi.org/10.1016/0022-2364(92)90305-q
21.
21.A. Haimovich and A. Goldbourt, J. Magn. Reson. 254, 131 (2015).
http://dx.doi.org/10.1016/j.jmr.2015.02.003
22.
22.F. Blanc, M. Leskes, and C. P. Grey, Acc. Chem. Res. 46, 1952 (2013).
http://dx.doi.org/10.1021/ar400022u
23.
23.D. Reichert, O. Pascui, P. Judeinstein, and T. Gullion, Chem. Phys. Lett. 402, 43 (2005).
http://dx.doi.org/10.1016/j.cplett.2004.12.006
24.
24.S. Kababya, M. Appel, Y. Haba, G. I. Titelman, and A. Schmidt, Macromolecules 32, 5357 (1999).
http://dx.doi.org/10.1021/ma982010e
25.
25.M. Wilkening, R. Amade, W. Iwaniak, and P. Heitjans, Phys. Chem. Chem. Phys. 9, 1239 (2007).
http://dx.doi.org/10.1039/b616269j
26.
26.C. J. Phiel and P. S. Klein, Annu. Rev. Pharmacol. Toxicol. 41, 789 (2001).
http://dx.doi.org/10.1146/annurev.pharmtox.41.1.789
27.
27.A. Haimovich, U. Eliav, and A. Goldbourt, J. Am. Chem. Soc. 134, 5647 (2012).
http://dx.doi.org/10.1021/ja211794x
28.
28.T. Gullion and J. Schaefer, J. Magn. Reson. 92, 439 (1991).
http://dx.doi.org/10.1016/0022-2364(91)90286-3
29.
29.U. Eliav and A. Goldbourt, J. Magn. Reson. 230, 227 (2013).
http://dx.doi.org/10.1016/j.jmr.2013.01.015
30.
30.A. Brinkmann and M. H. Levitt, J. Chem. Phys. 115, 357 (2001).
http://dx.doi.org/10.1063/1.1377031
31.
31.A. Brinkmann and A. P. M. Kentgens, J. Am. Chem. Soc. 128, 14758 (2006).
http://dx.doi.org/10.1021/ja065415k
32.
32.R. Fu, S. A. Smith, and G. Bodenhausen, Chem. Phys. Lett. 272, 361 (1997).
http://dx.doi.org/10.1016/S0009-2614(97)00537-X
33.
33.M. Bak, J. T. Rasmussen, and N. C. Nielsen, J. Magn. Reson. 147, 296 (2000).
http://dx.doi.org/10.1006/jmre.2000.2179
34.
34.U. Haeberlen and J. Waugh, Phys. Rev. 175, 453 (1968).
http://dx.doi.org/10.1103/PhysRev.175.453
35.
35.T. Gullion, Concepts Magn. Reson. 10, 277 (1998).
http://dx.doi.org/10.1002/(SICI)1099-0534(1998)10:5¡277::AID-CMR1¿3.0.CO;2-U
36.
36.G. Jaccard, S. Wimperis, and G. Bodenhausen, J. Chem. Phys. 85, 6282 (1986).
http://dx.doi.org/10.1063/1.451458
37.
37.G. J. Bowden and W. D. Hutchison, J. Magn. Reson. 67, 403 (1986).
http://dx.doi.org/10.1016/0022-2364(86)90378-1
38.
38.H. A. Buckmaster, R. Chatterjee, and Y. H. Shing, Phys. Status Solidi (a) 13, 9 (1972).
http://dx.doi.org/10.1002/pssa.2210130102
39.
39.S. Chandra Shekar, P. Rong, and A. Jerschow, Chem. Phys. Lett. 464, 235 (2008).
http://dx.doi.org/10.1016/j.cplett.2008.08.072
40.
40.K. T. Mueller, J. Magn. Reson., Ser. A 113, 81 (1995).
http://dx.doi.org/10.1006/jmra.1995.1059
41.
41.K. T. Mueller, T. P. Jarvie, D. J. Aurentz, and B. W. Roberts, Chem. Phys. Lett. 242, 535 (1995).
http://dx.doi.org/10.1016/0009-2614(95)00773-W
42.
42.T. Gullion and A. Vega, Prog. Nucl. Magn. Reson. Spectrosc. 47, 123 (2005).
http://dx.doi.org/10.1016/j.pnmrs.2005.08.004
43.
43.Wolfram Research, Inc., Mathematica, Version 10.3, Champaign, IL (2015).
44.
44.R. S. Thakur, N. D. Kurur, and P. K. Madhu, Chem. Phys. Lett. 426, 459 (2006).
http://dx.doi.org/10.1016/j.cplett.2006.06.007
45.
45.P. Pfeiffer and J. v. Modelski, Hoppe-Seyler’s Z. Physiol. Chem. 85, 1 (1913).
http://dx.doi.org/10.1515/bchm2.1913.85.1-2.1
46.
46.G. Müller, G. Maier, and M. Lutz, Inorg. Chim. Acta 218, 121 (1994).
http://dx.doi.org/10.1016/0020-1693(93)03786-a
47.
47.M. Veshtort and R. G. Griffin, J. Magn. Reson. 178, 248 (2006).
http://dx.doi.org/10.1016/j.jmr.2005.07.018
48.
48.A. R. Edmonds, Angular Momentum in Quantum Mechanics (Princton University Press, Princton, New Jersey, 1996).
49.
49.J. P. Amoureux, J. Trebosc, J. Wiench, and M. Pruski, J. Magn. Reson. 184, 1 (2007).
http://dx.doi.org/10.1016/j.jmr.2006.09.009
50.
50.See supplementary material at http://dx.doi.org/10.1063/1.4938415 for an alternative HRTC DQ pathway, and for sample Mathematica scripts for calculating the intensity of the HRTC experiment according to Equations(15)(18).[Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/jcp/144/2/10.1063/1.4938415
Loading
/content/aip/journal/jcp/144/2/10.1063/1.4938415
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/144/2/10.1063/1.4938415
2016-01-12
2016-09-26

Abstract

We discuss and analyze four magic-angle spinning solid-state NMR methods that can be used to measure internuclear distances and to obtain correlation spectra between a spin I = 1/2 and a half-integer spin S > 1/2 having a small quadrupolar coupling constant. Three of the methods are based on the heteronuclear multiple-quantum and single-quantum correlation experiments, that is, high rank tensors that involve the half spin and the quadrupolar spin are generated. Here, both zero and single-quantum coherence of the half spins are allowed and various coherence orders of the quadrupolar spin are generated, and filtered, via active recoupling of the dipolar interaction. As a result of generating coherence orders larger than one, the spectral resolution for the quadrupolar nucleus increases linearly with the coherence order. Since the formation of high rank tensors is independent of the existence of a finite quadrupolar interaction, these experiments are also suitable to materials in which there is high symmetry around the quadrupolar spin. A fourth experiment is based on the initial quadrupolar-driven excitation of symmetric high order coherences (up to = 2S, where S is the spin number) and subsequently generating by the heteronuclear dipolar interaction higher rank ( + 1 or higher) tensors that involve also the half spins. Due to the nature of this technique, it also provides information on the relative orientations of the quadrupolar and dipolar interaction tensors. For the ideal case in which the pulses are sufficiently strong with respect to other interactions, we derive analytical expressions for all experiments as well as for the transferred echo double resonance experiment involving a quadrupolar spin. We show by comparison of the fitting of simulations and the analytical expressions to experimental data that the analytical expressions are sufficiently accurate to provide experimental 7Li–13C distances in a complex of lithium, glycine, and water. Discussion of the regime for which such an approach is valid is given.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/144/2/1.4938415.html;jsessionid=mQRQAzO1WJo87ZlzxNLU6sqv.x-aip-live-06?itemId=/content/aip/journal/jcp/144/2/10.1063/1.4938415&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/144/2/10.1063/1.4938415&pageURL=http://scitation.aip.org/content/aip/journal/jcp/144/2/10.1063/1.4938415'
Right1,Right2,Right3,