Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.F. Krausz and M. Ivanov, Rev. Mod. Phys. 81, 163 (2009).
2.X. Xie, K. Doblhoff-Dier, S. Roither, M. S. Schöffler, D. Kartashov, H. Xu, T. Rathje, G. G. Paulus, A. Baltuška, S. Gräfe, and M. Kitzler, Phys. Rev. Lett. 109, 243001 (2012).
3.X. Xie, K. Doblhoff-Dier, H. Xu, S. Roither, M. S. Schöffler, D. Kartashov, S. Erattupuzha, T. Rathje, G. G. Paulus, K. Yamanouchi, A. Baltuška, S. Gräfe, and M. Kitzler, Phys. Rev. Lett. 112, 163003 (2014).
4.X. Xie, S. Roither, M. Schöffler, E. Lötstedt, D. Kartashov, L. Zhang, G. G. Paulus, A. Iwasaki, A. Baltuška, K. Yamanouchi, and M. Kitzler, Phys. Rev. X 4, 021005 (2014).
5.X. Xie, E. Lötstedt, S. Roither, M. Schöffler, D. Kartashov, K. Midorikawa, A. Baltuška, K. Yamanouchi, and M. Kitzler, Sci. Rep. 5, 12877 (2015).
6.R. Dörner, V. Mergel, O. Jagutzki, L. Spielberger, J. Ullrich, R. Moshammer, and H. Schmidt-Böcking, Phys. Rep. 330, 95 (2000).
7.J. Ullrich, R. Moshammer, A. Dorn, R. Dörner, L. P. H. Schmidt, and H. Schmidt-Böcking, Rep. Prog. Phys. 66, 1463 (2003).
8.L. Zhang, S. Roither, X. Xie, D. Kartashov, M. Schöffler, H. Xu, A. Iwasaki, S. Gräfe, T. Okino, K. Yamanouchi, A. Baltuska, and M. Kitzler, J. Phys. B 45, 085603 (2012).
9.X. Xie, S. Roither, D. Kartashov, E. Persson, D. Arbó, L. Zhang, S. Gräfe, M. Schöffler, J. Burgdörfer, A. Baltuška, and M. Kitzler, Phys. Rev. Lett. 108, 193004 (2012).
10.A. Alnaser, X. Tong, T. Osipov, S. Voss, C. Maharjan, B. Shan, Z. Chang, and C. Cocke, Phys. Rev. A 70, 23413 (2004).
11.F. Grasbon, G. Paulus, H. Walther, P. Villoresi, G. Sansone, S. Stagira, M. Nisoli, and S. De Silvestri, Phys. Rev. Lett. 91, 173003 (2003).
12.A. Rudenko, K. Zrost, C. D. Schröter, V. L. B. D. Jesus, B. Feuerstein, R. Moshammer, and J. Ullrich, J. Phys. B 37, L407 (2004).
13.M. Hochlaf, F. R. Bennett, G. Chambaud, and P. Rosmus, J. Phys. B 31, 2163 (1998).
14.T. Zimmermann, H. Köppel, and L. S. Cederbaum, J. Chem. Phys. 83, 4697 (1985).
15.G. Herzberg, Electronic Spectra and Electronic Structure of Polyatomic Molecules (Van Nostrand, New York, 1966).
16.J. Ortigoso, M. Rodrguez, M. Gupta, and B. Friedrich, J. Chem. Phys. 110, 3870 (1999).
17.F. Rosca-Pruna and M. Vrakking, Phys. Rev. Lett. 87, 153902 (2001).
18.H. Stapelfeldt and T. Seideman, Rev. Mod. Phys. 75, 543 (2003).
19.D. Pavičić, K. Lee, D. Rayner, P. Corkum, and D. Villeneuve, Phys. Rev. Lett. 98, 243001 (2007).
20.S. Petretti, Y. V. Vanne, A. Saenz, and P. Decleva, Phys. Rev. Lett. 104, 223001 (2010).
21.P. Krause and H. B. Schlegel, J. Phys. Chem. Lett. 6, 2140 (2015).
22.I. Litvinyuk, K. Lee, P. Dooley, D. Rayner, D. Villeneuve, and P. Corkum, Phys. Rev. Lett. 90, 233003 (2003).
23.P. Linstrom and W. Mallard, NIST Chemistry WebBook, NIST Standard Reference Database Number 69,
24.P. Baltzer, F. T. Chau, J. H. D. Eland, L. Karlsson, M. Lundqvist, J. Rostas, K. Y. Tam, H. Veenhuizen, and B. Wannberg, J. Chem. Phys. 104, 8922 (1996).
25.J. Liu, M. Hochlaf, and C. Y. Ng, J. Chem. Phys. 113, 7988 (2000).
26.J. Liu, W. Chen, C.-W. Hsu, M. Hochlaf, M. Evans, S. Stimson, and C. Y. Ng, J. Chem. Phys. 112, 10767 (2000).
27.A. E. Slattery, T. A. Field, M. Ahmad, R. I. Hall, J. Lambourne, F. Penent, P. Lablanquie, and J. H. D. Eland, J. Chem. Phys. 122, 84317 (2005).
28.A. Fleischer, H. Wörner, L. Arissian, L. Liu, M. Meckel, A. Rippert, R. Dörner, D. Villeneuve, P. Corkum, and A. Staudte, Phys. Rev. Lett. 107, 113003 (2011).

Data & Media loading...


Article metrics loading...



We visualize and control molecular dynamics taking place on intermediately populated states during different sequential double ionization pathways of CO using a sequence of two delayed laser pulses which exhibit different peak intensities. Measured yields of and of fragment pairs CO+/O+ as a function of delay between the two pulses are weakly modulated by various vibronic dynamics taking place in . By Fourier analysis of the modulations we identify the dynamics and show that they can be assigned to merely two double ionization pathways. We demonstrate that by reversing the sequence of the two pulses it becomes possible to control the pathway which is taken across towards the final state in . A comparison between the yields of and CO+/O+ reveals that the modulating vibronic dynamics oscillate out-of-phase with each other, thus opening up opportunities for strong-field fragmentation control on extended time scales.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd