Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/144/2/10.1063/1.4939638
1.
1.F. Krausz and M. Ivanov, Rev. Mod. Phys. 81, 163 (2009).
http://dx.doi.org/10.1103/RevModPhys.81.163
2.
2.X. Xie, K. Doblhoff-Dier, S. Roither, M. S. Schöffler, D. Kartashov, H. Xu, T. Rathje, G. G. Paulus, A. Baltuška, S. Gräfe, and M. Kitzler, Phys. Rev. Lett. 109, 243001 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.243001
3.
3.X. Xie, K. Doblhoff-Dier, H. Xu, S. Roither, M. S. Schöffler, D. Kartashov, S. Erattupuzha, T. Rathje, G. G. Paulus, K. Yamanouchi, A. Baltuška, S. Gräfe, and M. Kitzler, Phys. Rev. Lett. 112, 163003 (2014).
http://dx.doi.org/10.1103/PhysRevLett.112.163003
4.
4.X. Xie, S. Roither, M. Schöffler, E. Lötstedt, D. Kartashov, L. Zhang, G. G. Paulus, A. Iwasaki, A. Baltuška, K. Yamanouchi, and M. Kitzler, Phys. Rev. X 4, 021005 (2014).
http://dx.doi.org/10.1103/physrevx.4.021005
5.
5.X. Xie, E. Lötstedt, S. Roither, M. Schöffler, D. Kartashov, K. Midorikawa, A. Baltuška, K. Yamanouchi, and M. Kitzler, Sci. Rep. 5, 12877 (2015).
http://dx.doi.org/10.1038/srep12877
6.
6.R. Dörner, V. Mergel, O. Jagutzki, L. Spielberger, J. Ullrich, R. Moshammer, and H. Schmidt-Böcking, Phys. Rep. 330, 95 (2000).
http://dx.doi.org/10.1016/S0370-1573(99)00109-X
7.
7.J. Ullrich, R. Moshammer, A. Dorn, R. Dörner, L. P. H. Schmidt, and H. Schmidt-Böcking, Rep. Prog. Phys. 66, 1463 (2003).
http://dx.doi.org/10.1088/0034-4885/66/9/203
8.
8.L. Zhang, S. Roither, X. Xie, D. Kartashov, M. Schöffler, H. Xu, A. Iwasaki, S. Gräfe, T. Okino, K. Yamanouchi, A. Baltuska, and M. Kitzler, J. Phys. B 45, 085603 (2012).
http://dx.doi.org/10.1088/0953-4075/45/8/085603
9.
9.X. Xie, S. Roither, D. Kartashov, E. Persson, D. Arbó, L. Zhang, S. Gräfe, M. Schöffler, J. Burgdörfer, A. Baltuška, and M. Kitzler, Phys. Rev. Lett. 108, 193004 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.193004
10.
10.A. Alnaser, X. Tong, T. Osipov, S. Voss, C. Maharjan, B. Shan, Z. Chang, and C. Cocke, Phys. Rev. A 70, 23413 (2004).
http://dx.doi.org/10.1103/PhysRevA.70.023413
11.
11.F. Grasbon, G. Paulus, H. Walther, P. Villoresi, G. Sansone, S. Stagira, M. Nisoli, and S. De Silvestri, Phys. Rev. Lett. 91, 173003 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.173003
12.
12.A. Rudenko, K. Zrost, C. D. Schröter, V. L. B. D. Jesus, B. Feuerstein, R. Moshammer, and J. Ullrich, J. Phys. B 37, L407 (2004).
http://dx.doi.org/10.1088/0953-4075/37/24/L03
13.
13.M. Hochlaf, F. R. Bennett, G. Chambaud, and P. Rosmus, J. Phys. B 31, 2163 (1998).
http://dx.doi.org/10.1088/0953-4075/31/10/007
14.
14.T. Zimmermann, H. Köppel, and L. S. Cederbaum, J. Chem. Phys. 83, 4697 (1985).
http://dx.doi.org/10.1063/1.448994
15.
15.G. Herzberg, Electronic Spectra and Electronic Structure of Polyatomic Molecules (Van Nostrand, New York, 1966).
16.
16.J. Ortigoso, M. Rodrguez, M. Gupta, and B. Friedrich, J. Chem. Phys. 110, 3870 (1999).
http://dx.doi.org/10.1063/1.478241
17.
17.F. Rosca-Pruna and M. Vrakking, Phys. Rev. Lett. 87, 153902 (2001).
http://dx.doi.org/10.1103/PhysRevLett.87.153902
18.
18.H. Stapelfeldt and T. Seideman, Rev. Mod. Phys. 75, 543 (2003).
http://dx.doi.org/10.1103/RevModPhys.75.543
19.
19.D. Pavičić, K. Lee, D. Rayner, P. Corkum, and D. Villeneuve, Phys. Rev. Lett. 98, 243001 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.243001
20.
20.S. Petretti, Y. V. Vanne, A. Saenz, and P. Decleva, Phys. Rev. Lett. 104, 223001 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.223001
21.
21.P. Krause and H. B. Schlegel, J. Phys. Chem. Lett. 6, 2140 (2015).
http://dx.doi.org/10.1021/acs.jpclett.5b00929
22.
22.I. Litvinyuk, K. Lee, P. Dooley, D. Rayner, D. Villeneuve, and P. Corkum, Phys. Rev. Lett. 90, 233003 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.233003
23.
23.P. Linstrom and W. Mallard, NIST Chemistry WebBook, NIST Standard Reference Database Number 69, http://webbook.nist.gov/chemistry/.
24.
24.P. Baltzer, F. T. Chau, J. H. D. Eland, L. Karlsson, M. Lundqvist, J. Rostas, K. Y. Tam, H. Veenhuizen, and B. Wannberg, J. Chem. Phys. 104, 8922 (1996).
http://dx.doi.org/10.1063/1.471626
25.
25.J. Liu, M. Hochlaf, and C. Y. Ng, J. Chem. Phys. 113, 7988 (2000).
http://dx.doi.org/10.1063/1.1314354
26.
26.J. Liu, W. Chen, C.-W. Hsu, M. Hochlaf, M. Evans, S. Stimson, and C. Y. Ng, J. Chem. Phys. 112, 10767 (2000).
http://dx.doi.org/10.1063/1.481721
27.
27.A. E. Slattery, T. A. Field, M. Ahmad, R. I. Hall, J. Lambourne, F. Penent, P. Lablanquie, and J. H. D. Eland, J. Chem. Phys. 122, 84317 (2005).
http://dx.doi.org/10.1063/1.1850895
28.
28.A. Fleischer, H. Wörner, L. Arissian, L. Liu, M. Meckel, A. Rippert, R. Dörner, D. Villeneuve, P. Corkum, and A. Staudte, Phys. Rev. Lett. 107, 113003 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.113003
http://aip.metastore.ingenta.com/content/aip/journal/jcp/144/2/10.1063/1.4939638
Loading
/content/aip/journal/jcp/144/2/10.1063/1.4939638
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/144/2/10.1063/1.4939638
2016-01-12
2016-09-27

Abstract

We visualize and control molecular dynamics taking place on intermediately populated states during different sequential double ionization pathways of CO using a sequence of two delayed laser pulses which exhibit different peak intensities. Measured yields of and of fragment pairs CO+/O+ as a function of delay between the two pulses are weakly modulated by various vibronic dynamics taking place in . By Fourier analysis of the modulations we identify the dynamics and show that they can be assigned to merely two double ionization pathways. We demonstrate that by reversing the sequence of the two pulses it becomes possible to control the pathway which is taken across towards the final state in . A comparison between the yields of and CO+/O+ reveals that the modulating vibronic dynamics oscillate out-of-phase with each other, thus opening up opportunities for strong-field fragmentation control on extended time scales.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/144/2/1.4939638.html;jsessionid=uxqL-cb5Tt0PQpva_NHjVbw2.x-aip-live-06?itemId=/content/aip/journal/jcp/144/2/10.1063/1.4939638&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/144/2/10.1063/1.4939638&pageURL=http://scitation.aip.org/content/aip/journal/jcp/144/2/10.1063/1.4939638'
Right1,Right2,Right3,