Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/144/20/10.1063/1.4950749
1.
G. S. Manning, Biopolymers 20, 1751 (1981).
http://dx.doi.org/10.1002/bip.1981.360200815
2.
P. J. Hargerman, Annu. Rev. Biophys. Biophys. Chem. 17, 265 (1988).
http://dx.doi.org/10.1146/annurev.bb.17.060188.001405
3.
B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, and J. D. Watson, Molecular Biology of the Cell, 3rd ed. (Garland Publishing Inc., New York, 1994), pp. 336399.
4.
A. Y. Grosberg and A. R. Khokhlov, Statistical Physics of Macromolecules (AIP Press, New York, 1994).
5.
P. G. de Gennes, Scaling Concepts in Polymer Physics (Cornell University Press, NY, 1979).
6.
V. A. Bloomfield, Curr. Opin. Struct. Biol. 6, 334 (1996).
http://dx.doi.org/10.1016/S0959-440X(96)80052-2
7.
L. C. Gosule and J. A. Schellman, Nature 259, 333 (1976).
http://dx.doi.org/10.1038/259333a0
8.
D. K. Chattoraj, L. C. Gosule, and A. Schellman, J. Mol. Biol. 121, 327 (1978).
http://dx.doi.org/10.1016/0022-2836(78)90367-4
9.
J. Widom and R. L. Baldwin, Biopolymers 22, 1595 (1983).
http://dx.doi.org/10.1002/bip.360220612
10.
D. D. Dunlap, A. Maggi, M. R. Soria, and L. Monaco, Nucleic Acids Res. 25, 3095 (1997).
http://dx.doi.org/10.1093/nar/25.15.3095
11.
X.-G. Sun, E.-H. Cao, X.-Y. Zhang, D. Liu, and C. Bai, Inorg. Chem. Commun. 5, 181 (2002).
http://dx.doi.org/10.1016/S1387-7003(02)00320-9
12.
Y. T. Sato, S. Watanabe, T. Kenmotsu, M. Ichikawa, Y. Yoshikawa, J. Teramoto, T. Imanaka, A. Ishihama, and K. Yoshikawa, Biophys. J. 105, 1037 (2013).
http://dx.doi.org/10.1016/j.bpj.2013.07.025
13.
K. Besteman, K. van Eijk, and S. G. Lemay, Nat. Phys. 3, 641 (2007).
http://dx.doi.org/10.1038/nphys697
14.
B. A. Todd and D. C. Rau, Nucleic Acids Res. 36, 501 (2008).
http://dx.doi.org/10.1093/nar/gkm1038
15.
K. Andresen, X. Qiu, S. A. Pabit, J. S. Lamb, H. Y. Park, L. W. Kwok, and L. Pollack, Biophys. J. 95, 287 (2008).
http://dx.doi.org/10.1529/biophysj.107.123174
16.
A. C. Toma, M. de Frutos, F. Livolant, and E. Raspaud, Biomacromolecules 10, 2129 (2009).
http://dx.doi.org/10.1021/bm900275s
17.
A. Estevez and D. Baigl, Soft Matter 7, 6746 (2011).
http://dx.doi.org/10.1039/c1sm05373f
18.
A. Gonzalez-Perez and R. S. Dias, Frontiers Biosci. E1, 228 (2009).
http://dx.doi.org/10.2741/e22
19.
V. B. Teif and K. Bohinc, Prog. Biophys. Mol. Biol. 105, 208 (2011).
http://dx.doi.org/10.1016/j.pbiomolbio.2010.07.002
20.
E. Raspaud, M. Olvera de la Cruz, J.-L. Sikorav, and F. Livolant, Biophys. J. 74, 381 (1998).
http://dx.doi.org/10.1016/S0006-3495(98)77795-1
21.
Y. Burak, G. Ariel, and D. Andelman, Biophys. J. 85, 2100 (2003).
http://dx.doi.org/10.1016/S0006-3495(03)74638-4
22.
T. Iwaki, T. Saito, and K. Yoshikawa, Colloids Surf. B 56, 126 (2007).
http://dx.doi.org/10.1016/j.colsurfb.2006.10.040
23.
Y. Burak, G. Ariel, and D. Andelman, Curr. Opin. Colloid Interface Sci. 9, 53 (2004).
http://dx.doi.org/10.1016/j.cocis.2004.05.002
24.
N. Korolev, A. P. Lyubartsev, A. Laaksonen, and L. Nordenskiold, Biophys. J. 82, 2860 (2002).
http://dx.doi.org/10.1016/S0006-3495(02)75628-2
25.
M. Takahashi, K. Yoshikawa, V. V. Vasilevskaya, and A. R. Khokhlov, J. Phys. Chem. B 101, 9396 (1997).
http://dx.doi.org/10.1021/jp9716391
26.
K. Yoshikawa and Y. Yoshikawa, Pharmaceutical Perspectives of Nucleic Acid-Based Therapeutics (Taylor & Francis, Oxford, 2002), pp. 137163.
27.
Y. Yoshikawa and K. Yoshikawa, FEBS Lett. 361, 277 (1995).
http://dx.doi.org/10.1016/0014-5793(95)00190-K
28.
N. Makita, M. Ullner, and K. Yoshikawa, Macromolecules 39, 6200 (2006).
http://dx.doi.org/10.1021/ma060669b
29.
K. Hibino, Y. Yoshikawa, S. Murata, T. Saito, A. A. Zinchenko, and K. Yoshikawa, Chem. Phys. Lett. 426, 405 (2006).
http://dx.doi.org/10.1016/j.cplett.2006.05.120
30.
N. Makita, Y. Yoshikawa, Y. Takenaka, T. Sakaue, M. Suzuki, C. Watanabe, T. Kanai, T. Kanbe, T. Imanaka, and K. Yoshikawa, J. Phys. Chem. B 155, 4453 (2011).
http://dx.doi.org/10.1021/jp111331q
31.
Y. Yoshikawa, Y. Suzuki, K. Yamada, W. Fukuda, K. Yoshikawa, K. Takeyasu, and T. Imanaka, J. Chem. Phys. 135, 225101 (2011).
http://dx.doi.org/10.1063/1.3666845
32.
S. Chasovskikh and A. Dritschilo, Appl. Surf. Sci. 188, 481 (2002).
http://dx.doi.org/10.1016/S0169-4332(01)00970-9
33.
P. W. Debye and E. Hückel, Phys. Z. 24, 185 (1923).
34.
F. Oosawa, Polyelectrolytes (Marcel Dekker, New York, 1971).
35.
G. S. Manning, Q. Rev. Biophys. 11, 179 (1978).
http://dx.doi.org/10.1017/s0033583500002031
36.
M. Yanagida, Y. Hiraoka, and I. Katsuya, Cold Spring Harbor Symp. Quant. Biol. 47, 177 (1983).
http://dx.doi.org/10.1101/SQB.1983.047.01.023
37.
Y. Yamasaki, Y. Teramoto, and K. Yoshikawa, Biophys. J. 80, 2823 (2001).
http://dx.doi.org/10.1016/S0006-3495(01)76249-2
38.
A. Estévez-Torres, C. Crozatier, A. Diguet, T. Hara, H. Saito, K. Yoshikawa, and D. Baigl, Proc. Natl. Acad. Sci. U. S. A. 106, 12219 (2009).
http://dx.doi.org/10.1073/pnas.0904382106
39.
Y. Takenaka, H. Nagahara, H. Kitahata, and K. Yoshikawa, Phys. Rev. E 77, 031905 (2008).
http://dx.doi.org/10.1103/PhysRevE.77.031905
http://aip.metastore.ingenta.com/content/aip/journal/jcp/144/20/10.1063/1.4950749
Loading
/content/aip/journal/jcp/144/20/10.1063/1.4950749
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/144/20/10.1063/1.4950749
2016-05-23
2016-09-27

Abstract

Our observation reveals the effects of divalent and trivalent cations on the higher-order structure of giant DNA (T4 DNA 166 kbp) by fluorescence microscopy. It was found that divalent cations, Mg(2+) and Ca(2+), inhibit DNA compaction induced by a trivalent cation, spermidine (SPD(3+)). On the other hand, in the absence of SPD(3+), divalent cations cause the shrinkage of DNA. As the control experiment, we have confirmed the minimum effect of monovalent cation, Na(+) on the DNA higher-order structure. We interpret the competition between 2+ and 3+ cations in terms of the change in the translational entropy of the counterions. For the compaction with SPD(3+), we consider the increase in translational entropy due to the ion-exchange of the intrinsic monovalent cations condensing on a highly charged polyelectrolyte, double-stranded DNA, by the 3+ cations. In contrast, the presence of 2+ cation decreases the gain of entropy contribution by the ion-exchange between monovalent and 3+ ions.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/144/20/1.4950749.html;jsessionid=xcaMC3u_wyMM8XlUgiMBnM2Y.x-aip-live-02?itemId=/content/aip/journal/jcp/144/20/10.1063/1.4950749&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/144/20/10.1063/1.4950749&pageURL=http://scitation.aip.org/content/aip/journal/jcp/144/20/10.1063/1.4950749'
Right1,Right2,Right3,