Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/144/20/10.1063/1.4952762
1.
G. G. Brown, B. C. Dian, K. O. Douglass, S. M. Geyer, S. T. Shipman, and B. H. Pate, Rev. Sci. Instrum. 79, 053103 (2008).
http://dx.doi.org/10.1063/1.2919120
2.
G. G. Brown, B. C. Dian, K. O. Douglass, S. M. Geyer, and B. H. Pate, J. Mol. Spectrosc. 238, 200 (2006).
http://dx.doi.org/10.1016/j.jms.2006.05.003
3.
C. Cabezas, M. A. T. Robben, A. M. Rijs, I. Peña, and J. L. Alonso, Phys. Chem. Chem. Phys. 17, 20274 (2015).
http://dx.doi.org/10.1039/C5CP02654G
4.
C. Pérez, D. P. Zaleski, N. A. Seifert, B. Temelso, G. C. Shields, Z. Kisiel, and B. H. Pate, Angew. Chem., Int. Ed. 53, 14368 (2014).
http://dx.doi.org/10.1002/anie.201407447
5.
K. Prozument, Y. V. Suleimanov, B. Buesser, J. M. Oldham, W. H. Green, A. G. Suits, and R. W. Field, J. Phys. Chem. Lett. 5, 3641 (2014).
http://dx.doi.org/10.1021/jz501758p
6.
C. Abeysekera, B. Joalland, N. Ariyasingha, L. N. Zack, I. R. Sims, R. W. Field, and A. G. Suits, J. Phys. Chem. Lett. 6, 1599 (2015).
http://dx.doi.org/10.1021/acs.jpclett.5b00519
7.
B. C. Dian, G. G. Brown, K. O. Douglass, and B. H. Pate, Science 320, 924 (2008).
http://dx.doi.org/10.1126/science.1155736
8.
G. B. Park, C. C. Womack, A. R. Whitehill, J. Jiang, S. Ono, and R. W. Field, J. Chem. Phys. 142, 144201 (2015).
http://dx.doi.org/10.1063/1.4916908
9.
D. Patterson and J. M. Doyle, Phys. Rev. Lett. 111, 023008 (2013).
http://dx.doi.org/10.1103/PhysRevLett.111.023008
10.
Y. Zhou, D. D. Grimes, T. J. Barnum, D. Patterson, S. L. Coy, E. Klein, J. S. Muenter, and R. W. Field, Chem. Phys. Lett. 640, 124 (2015).
http://dx.doi.org/10.1016/j.cplett.2015.10.010
11.
R. H. Dicke and R. H. Romer, Rev. Sci. Instrum. 26, 915 (1955).
http://dx.doi.org/10.1063/1.1715156
12.
R. M. Somers, T. O. Poehler, and P. E. Wagner, Rev. Sci. Instrum. 46, 719 (1975).
http://dx.doi.org/10.1063/1.1134296
13.
J. Ekkers and W. H. Flygare, Rev. Sci. Instrum. 47, 448 (1976).
http://dx.doi.org/10.1063/1.1134647
14.
M. L. Unland and W. H. Flygare, J. Chem. Phys. 45, 2421 (1966).
http://dx.doi.org/10.1063/1.1727957
15.
T. Amano and T. Shimizu, J. Phys. Soc. Jpn. 35, 237 (1973).
http://dx.doi.org/10.1143/JPSJ.35.237
16.
B. Macke and P. Glorieux, Chem. Phys. Lett. 18, 91 (1973).
http://dx.doi.org/10.1016/0009-2614(73)80347-1
17.
K. Tanaka and E. Hirota, J. Mol. Spectrosc. 59, 286 (1976).
http://dx.doi.org/10.1016/0022-2852(76)90298-8
18.
S. L. Coy, J. Chem. Phys. 63, 5145 (1975).
http://dx.doi.org/10.1063/1.431296
19.
J. C. McGurk, R. T. Hofmann, and W. H. Flygare, J. Chem. Phys. 60, 2922 (1974).
http://dx.doi.org/10.1063/1.1681462
20.
T. L. Weatherly, Q. Williams, and F. Tsai, J. Chem. Phys. 61, 2925 (1974).
http://dx.doi.org/10.1063/1.1682434
21.
J. H.-S. Wang, J. M. Levy, S. G. Kukolich, and J. I. Steinfeld, Chem. Phys. 1, 141 (1973).
http://dx.doi.org/10.1016/0301-0104(73)85006-2
22.
J. C. McGurk, T. G. Schmalz, and W. H. Flygare, J. Chem. Phys. 60, 4181 (1974).
http://dx.doi.org/10.1063/1.1680886
23.
T. J. Balle, E. J. Campbell, M. R. Keenan, and W. H. Flygare, J. Chem. Phys. 71, 2723 (1979).
http://dx.doi.org/10.1063/1.438631
24.
T. J. Balle and W. H. Flygare, Rev. Sci. Instrum. 52, 33 (1981).
http://dx.doi.org/10.1063/1.1136443
25.
A. C. Legon and D. J. Millen, Faraday Discuss. Chem. Soc. 73, 71 (1982).
http://dx.doi.org/10.1039/dc9827300071
26.
A. C. Legon, Annu. Rev. Phys. Chem. 34, 275 (1983).
http://dx.doi.org/10.1146/annurev.pc.34.100183.001423
27.
A. C. Legon, J. Mol. Struct. 266, 21 (1992).
http://dx.doi.org/10.1016/0022-2860(92)80047-L
28.
A. Bauder, J. Mol. Struct. 408/409, 33 (1997).
http://dx.doi.org/10.1016/S0022-2860(96)09492-6
29.
Y. Ohshima and Y. Endo, Chem. Phys. Lett. 256, 635 (1996).
http://dx.doi.org/10.1016/0009-2614(96)00500-3
30.
M. C. McCarthy and P. Thaddeus, Chem. Soc. Rev. 30, 177 (2001).
http://dx.doi.org/10.1039/b006648f
31.
Y. Kawashima, T. Usami, N. Ohashi, R. D. Suenram, J. T. Hougen, and E. Hirota, Acc. Chem. Res. 39, 216 (2006).
http://dx.doi.org/10.1021/ar040310c
32.
J. Alonso and J. C. López, “Microwave spectroscopy of biomolecular building blocks,” inGas-Phase IR Spectroscopy and Structure of Biological Molecules, edited by A. M. Rijs and J. Oomens (Springer, 2015).
33.
J. C. McGurk, T. G. Schmalz, and W. H. Flygare, in Advances in Chemical Physics, edited byS. A. Rice and I. Prigogine (Academic, New York, 1974), Chap. 1.
34.
G. B. Park and R. W. Field, J. Mol. Spectrosc. 312, 54 (2015).
http://dx.doi.org/10.1016/j.jms.2015.03.010
35.
L. Allen and J. H. Eberly, Optical Resonance and Two-Level Atoms (Dover, New York, 1987).
36.
D. Schmitz, V. A. Shubert, T. Betz, and M. Schnell, J. Mol. Spectrosc. 280, 77 (2012).
http://dx.doi.org/10.1016/j.jms.2012.08.001
37.
J.-U. Grabow, E. S. Palmer, M. C. McCarthy, and P. Thaddeus, Rev. Sci. Instrum. 76, 093106 (2005).
http://dx.doi.org/10.1063/1.2039347
38.
J.-U. Grabow, W. Stahl, and H. Dreizler, Rev. Sci. Instrum. 67, 4072 (1996).
http://dx.doi.org/10.1063/1.1147553
39.
J. L. Neill, K. O. Douglass, B. H. Pate, and D. W. Pratt, Phys. Chem. Chem. Phys. 13, 7253 (2011).
http://dx.doi.org/10.1039/c0cp01573c
40.
M. K. Jahn, D. A. Dewald, D. Wachsmuth, J.-U. Grabow, and S. C. Mehrotra, J. Mol. Spectrosc. 280, 54 (2012).
http://dx.doi.org/10.1016/j.jms.2012.07.006
41.
I. Peña, M. Varela, V. G. Franco, J. C. López, C. Cabezas, and J. L. Alonso, J. Phys. Chem. A 118, 11373 (2014).
http://dx.doi.org/10.1021/jp509823v
42.
I. A. Finneran, D. B. Holland, P. B. Carroll, and G. A. Blake, Rev. Sci. Instrum. 84, 083104 (2013).
http://dx.doi.org/10.1063/1.4818137
43.
F. Xian, C. L. Hendrickson, G. T. Blakney, S. C. Beu, and A. G. Marshall, Anal. Chem. 82, 8807 (2010).
http://dx.doi.org/10.1021/ac101091w
44.
A. L. Steber, B. J. Harris, J. L. Neill, and B. H. Pate, J. Mol. Spectrosc. 280, 3 (2012).
http://dx.doi.org/10.1016/j.jms.2012.07.015
45.
D. P. Zaleski, J. L. Neill, M. T. Muckle, N. A. Seifert, P. B. Carroll, S. L. W. Weaver, and B. H. Pate, J. Mol. Spectrosc. 280, 68 (2012).
http://dx.doi.org/10.1016/j.jms.2012.07.014
46.
K. Prozument, G. B. Park, R. G. Shaver, A. K. Vasiliou, J. M. Oldham, D. E. David, J. S. Muenter, J. F. Stanton, A. G. Suits, G. B. Ellison, and R. W. Field, Phys. Chem. Chem. Phys. 16, 15739 (2014).
http://dx.doi.org/10.1039/C3CP55352C
47.
C. Pérez, M. T. Muckle, D. P. Zaleski, N. A. Seifert, B. Temelso, G. C. Shields, Z. Kisiel, and B. H. Pate, Science 336, 897 (2012).
http://dx.doi.org/10.1126/science.1220574
48.
G. Feng, L. Evangelisti, I. Cacelli, L. Carbonaro, G. Prampolini, and W. Caminati, Chem. Commun. 50, 171 (2014).
http://dx.doi.org/10.1039/C3CC47206J
49.
N. M. Kidwell, V. Vaquero-Vara, T. K. Ormond, G. T. Buckingham, D. Zhang, D. N. Mehta-Hurt, L. McCaslin, M. R. Nimlos, J. W. Daily, B. C. Dian, J. F. Stanton, G. B. Ellison, and T. S. Zwier, J. Phys. Chem. Lett. 5, 2201 (2014).
http://dx.doi.org/10.1021/jz5010895
50.
J. L. Neill, S. T. Shipman, L. Alvarez-Valtierra, A. Lesarri, Z. Kisiel, and B. H. Pate, J. Mol. Spectrosc. 269, 21 (2011).
http://dx.doi.org/10.1016/j.jms.2011.04.016
51.
G. B. Park, A. H. Steeves, K. Kuyanov-Prozument, J. L. Neill, and R. W. Field, J. Chem. Phys. 135, 024202 (2011).
http://dx.doi.org/10.1063/1.3597774
52.
E. Gerecht, K. O. Douglass, and D. F. Plusquellic, Opt. Express 19, 8973 (2011).
http://dx.doi.org/10.1364/OE.19.008973
53.
J. L. Neill, B. J. Harris, A. L. Steber, K. O. Douglass, D. F. Plusquellic, and B. H. Pate, Opt. Express 21, 19743 (2013).
http://dx.doi.org/10.1364/OE.21.019743
54.
C. E. Cleeton and N. H. Williams, Phys. Rev. 45, 234 (1934).
http://dx.doi.org/10.1103/PhysRev.45.234
55.
B. Bleaney and R. P. Penrose, Nature 157, 339 (1946).
http://dx.doi.org/10.1038/157339c0
56.
A. J. Thomas, M. M. Serafin, A. A. Ernst, R. A. Peebles, and S. A. Peebles, J. Mol. Spectrosc. 289, 65 (2013).
http://dx.doi.org/10.1016/j.jms.2013.03.007
57.
J. M. Oldham, C. Abeysekera, B. Joalland, L. N. Zack, K. Prozument, I. R. Sims, G. B. Park, R. W. Field, and A. G. Suits, J. Chem. Phys. 141, 154202 (2014).
http://dx.doi.org/10.1063/1.4897979
58.
C. Abeysekera, L. N. Zack, G. B. Park, B. Joalland, J. M. Oldham, K. Prozument, N. M. Ariyasingha, I. R. Sims, R. W. Field, and A. G. Suits, J. Chem. Phys. 141, 214203 (2014).
http://dx.doi.org/10.1063/1.4903253
59.
S. Twagirayezu, T. N. Clasp, D. S. Perry, J. L. Neill, M. T. Muckle, and B. H. Pate, J. Phys. Chem. A 114, 6818 (2010).
http://dx.doi.org/10.1021/jp1019735
60.
K. Prozument, A. P. Colombo, Y. Zhou, G. B. Park, V. S. Petrović, S. L. Coy, and R. W. Field, Phys. Rev. Lett. 107, 143001 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.143001
61.
A. P. Colombo, Y. Zhou, K. Prozument, S. L. Coy, and R. W. Field, J. Chem. Phys. 138, 014301 (2013).
http://dx.doi.org/10.1063/1.4772762
62.
Y. Zhou, Mol. Phys. 110, 1909 (2012).
http://dx.doi.org/10.1080/00268976.2012.692886
63.
D. D. Grimes, S. L. Coy, T. J. Barnum, Y. Zhou, S. F. Yelin, and R. W. Field, “Direct single-shot observation of millimeter wave superradiance in Rydberg-Rydberg transitions” (unpublished).
64.
D. Schmitz, V. A. Shubert, D. Patterson, A. Krin, and M. Schnell, J. Chem. Phys. Lett. 6, 1493 (2015).
http://dx.doi.org/10.1021/acs.jpclett.5b00494
65.
D. Patterson, M. Schnell, and J. M. Doyle, Nature 497, 475 (2013).
http://dx.doi.org/10.1038/nature12150
66.
S. Lobsiger, C. Perez, L. Evangelisti, K. K. Lehmann, and B. H. Pate, J. Phys. Chem. Lett. 6, 196 (2015).
http://dx.doi.org/10.1021/jz502312t
67.
V. A. Shubert, D. Schmitz, and M. Schnell, J. Mol. Spectrosc. 300, 31 (2014).
http://dx.doi.org/10.1016/j.jms.2014.04.002
68.
J.-U. Grabow, Angew. Chem., Int. Ed. 52, 11698 (2013).
http://dx.doi.org/10.1002/anie.201307159
69.
D. S. Wilcox, K. M. Hotopp, and B. C. Dian, J. Phys. Chem. A 115, 8895 (2011).
http://dx.doi.org/10.1021/jp2043202
http://aip.metastore.ingenta.com/content/aip/journal/jcp/144/20/10.1063/1.4952762
Loading
/content/aip/journal/jcp/144/20/10.1063/1.4952762
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/144/20/10.1063/1.4952762
2016-05-27
2016-09-29

Abstract

Since its invention in 2006, the broadband chirped pulse Fourier transform spectrometer has transformed the field of microwave spectroscopy. The technique enables the collection of a ≥10 GHz bandwidth spectrum in a single shot of the spectrometer, which allows broadband, high-resolution microwave spectra to be acquired several orders of magnitude faster than what was previously possible. We discuss the advantages and challenges associated with the technique and look back on the first ten years of chirped pulse Fourier transform spectroscopy. In addition to enabling faster-than-ever structure determination of increasingly complex species, the technique has given rise to an assortment of entirely new classes of experiments, ranging from chiral sensing by three-wave mixing to microwave detection of multichannel reaction kinetics. However, this is only the beginning. Future generations of microwave experiments will make increasingly creative use of frequency-agile pulse sequences for the coherent manipulation and interrogation of molecular dynamics.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/144/20/1.4952762.html;jsessionid=6TrghrXH_2G6OGazm_DCbtxp.x-aip-live-03?itemId=/content/aip/journal/jcp/144/20/10.1063/1.4952762&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/144/20/10.1063/1.4952762&pageURL=http://scitation.aip.org/content/aip/journal/jcp/144/20/10.1063/1.4952762'
Right1,Right2,Right3,