Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/144/21/10.1063/1.4952415
1.
S. M. Barnett and R. Loudon, “The Enigma of optical momentum in a medium,” Philos. Trans. R. Soc., A 368, 927939 (2010).
http://dx.doi.org/10.1098/rsta.2009.0207
2.
R. N. C. Pfeifer, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Momentum of an electromagnetic wave in dielectric media,” Rev. Mod. Phys. 79, 11971216 (2007).
http://dx.doi.org/10.1103/RevModPhys.79.1197
3.
J. J. Hopfield, “Theory of the contribution of excitons to the complex dielectric constant of crystals,” Phys. Rev. 112, 15551567 (1958).
http://dx.doi.org/10.1103/PhysRev.112.1555
4.
S. I. Pekar, “Theory of electromagnetic waves in a crystal with excitons,” J. Phys. Chem. Solids 6, 1122 (1958).
http://dx.doi.org/10.1016/0022-3697(58)90127-6
5.
V. M. Agranovich, Excitations in Organic Solids (Oxford University Press, 2009).
6.
C. F. Klingshirn, Semiconductor Optics, 4th ed. (Springer Verlag, Berlin, 2012).
7.
K. Henneberger, “Additional boundary conditions: An historical mistake,” Phys. Rev. Lett. 80, 28892892 (1998).
http://dx.doi.org/10.1103/PhysRevLett.80.2889
8.
D. F. Nelson and B. Chen, “Comment on ‘Additional boundary conditions: An historical mistake,’” Phys. Rev. Lett. 83, 1263 (1999).
http://dx.doi.org/10.1103/PhysRevLett.83.1263
9.
R. Zeyher, “Comment on ‘Additional boundary conditions: An historical mistake,’” Phys. Rev. Lett. 83, 1264 (1999).
http://dx.doi.org/10.1103/PhysRevLett.83.1264
10.
K. Henneberger, “Reply to comments on ‘Additional boundary conditions: An historical mistake,’” Phys. Rev. Lett. 83, 12651266 (1999).
http://dx.doi.org/10.1103/PhysRevLett.83.1265
11.
J. Tignon, T. Hasche, D. S. Chemla, H. C. Schneider, F. Jahnke, and S. W. Koch, “Unified picture of polariton propagation in bulk GaAs semiconductors,” Phys. Rev. Lett. 84, 33823385 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.3382
12.
H. M. Gibbs, G. Khitrova, and S. W. Koch, “Exciton-polariton light-semiconductor coupling effects,” Nat. Photonics 5, 275282 (2011).
http://dx.doi.org/10.1038/nphoton.2011.15
13.
H. C. Schneider, F. Jahnke, S. W. Koch, J. Tignon, T. Hasche, and D. S. Chemla, “Polariton propagation in high quality semiconductors: Microscopic theory and experiment versus additional boundary conditions,” Phys. Rev. B 63, 045202 (2001).
http://dx.doi.org/10.1103/PhysRevB.63.045202
14.
A. Berlin and G. Zotti, “Self-assembly of mono- and multilayers of polyconjugated conducting polymers,” Macromol. Rapid Commun. 21, 301318 (2000).
http://dx.doi.org/10.1002/(SICI)1521-3927(20000401)21:7<301::AID-MARC301>3.0.CO2-6
15.
R. Michalitsch, P. Lang, A. Yassar, G. Nauer, and F. Garnier, “Properties of self-assembled monolayers (SAMs) from thiol-functionalized oligothiophenes,” Adv. Mater. 9, 321326 (1997).
http://dx.doi.org/10.1002/adma.19970090407
16.
C. Nogues, P. Lang, B. Desbat, T. Buffeteau, and L. Leiserowitz, “Two-dimensional crystal structure of a quaterthiophene-alkanethiol self-assembled monolayer on gold,” Langmuir 24, 84588564 (2008).
http://dx.doi.org/10.1021/la800444m
17.
E. C. P. Smits, S. G. J. Mathijssen, P. A. van Hal, S. Setayesh, T. C. T. Geuns, K. A. H. A. Mutsaers, E. Cantatore, H. J. Wondergem, O. Werzer, R. Resel, M. Kemerink, S. Kirchmeyer, A. M. Muzafarov, S. A. Ponomarenko, B. de Boer, P. W. M. Blom, and D. M. de Leeuw, “Bottom-up organic integrated circuits,” Nature 455, 956959 (2008).
http://dx.doi.org/10.1038/nature07320
18.
F. Gholamrezaie, S. G. J. Mathijssen, E. C. P. Smits, T. C. T. Geuns, P. A. van Hal, S. A. Ponomarenko, H. G. Flesch, R. Resel, E. Cantatore, P. W. M. Blom, and D. M. De Leeuw, “Ordered semiconducting self-assembled monolayers on polymeric surfaces utilized in organic integrated circuits,” Nano Lett. 10, 19982002 (2010).
http://dx.doi.org/10.1021/nl9032268
19.
F. Gholamrezaie, M. Kirkus, S. G. J. Mathijssen, D. M. de Leeuw, and S. C. J. Meskers, “Photophysics of self-assembled monolayers of a π-conjugated quinquethiophene derivative,” J. Phys. Chem. A 116, 76457650 (2012).
http://dx.doi.org/10.1021/jp3045127
20.
H.-J. Egelhaaf, P. Bäuerle, K. Rauer, V. Hoffmann, and D. Oelkrug, “UV/Vis and IR spectroscopic studies on molecular orientation in ultrathin films of polythiophene model compounds,” J. Mol. Struct. 293, 249252 (1993).
http://dx.doi.org/10.1016/0022-2860(93)80060-9
21.
J. M. Turlet, Ph. Kottis, and M. R. Philpott, “Polariton and surface exciton state effects in the Photodynamics of organic molecular crystals,” Adv. Chem. Phys. 54, 303468 (1983).
http://dx.doi.org/10.1002/9780470142783.ch4
22.
M. R. Philpott, “Theory of vibronic coupling in the polariton states of molecular crystals,” J. Chem. Phys. 52, 58425850 (1970).
http://dx.doi.org/10.1063/1.1672867
23.
F. C. Spano, “The spectral signatures of Frenkel polarons in H- and j-aggregates,” Acc. Chem. Res. 43, 429439 (2010).
http://dx.doi.org/10.1021/ar900233v
24.
A. Halpin, P. J. M. Johnson, R. Tempelaar, R. S. Murphy, J. Knoester, T. L. C. Jansen, and R. J. D. Miller, “Two-dimensional spectroscopy of a molecular dimer unveils the effects of vibronic coupling on exciton coherences,” Nat. Chem. 6, 196201 (2014).
http://dx.doi.org/10.1038/nchem.1834
25.
I. J. Lalov and I. Zhelyazkov, “Excitonic and vibronic spectra of Frenkel excitons in a two-dimensional simple lattice,” Chem. Phys. 410, 7180 (2013).
http://dx.doi.org/10.1016/j.chemphys.2012.10.017
26.
K. Song, S. Bai, and Q. Shi, “A time domain two-particle approximation to calculate the absorption and circular dichroism line shapes of molecular aggregates,” J. Chem. Phys. 143, 064109 (2015).
http://dx.doi.org/10.1063/1.4928584
27.
M. R. Philpott, “Theory of the coupling of electronic and vibrational excitations in molecular crystals and helical polymers,” J. Chem. Phys. 55, 20392054 (1971).
http://dx.doi.org/10.1063/1.1676371
28.
S. Möller, G. Weiser, and C. Taliani, “The role of electrodynamics in the spectra of organic crystals with mesoscopic order: Nanocrystalline α-sexithiophene,” Chem. Phys. 295, 1120 (2003).
http://dx.doi.org/10.1016/j.chemphys.2003.07.008
29.
P. Spearman, A. Borghesi, M. Campione, M. Laicini, M. Moret, and S. Tavazzi, “Directional dispersion in absorbance spectra of oligothiophene crystals,” J. Chem. Phys. 122, 014706 (2005).
http://dx.doi.org/10.1063/1.1826052
30.
A. Stradomska and P. Petelenz, “Polariton effects in electroabsorption of molecular crystals with several molecules in the unit cell—sexithiophene,” Org. Electron. 7, 551560 (2006).
http://dx.doi.org/10.1016/j.orgel.2006.08.004
31.
M. R. Philpott and P. G. Sherman, “Excitons and polaritons in monomolecular layers,” Phys. Rev. B 12, 53815394 (1975).
http://dx.doi.org/10.1103/PhysRevB.12.5381
32.
D. Möbius, “Scheibe aggregates,” Adv. Mater. 7, 437444 (1995).
http://dx.doi.org/10.1002/adma.19950070503
33.
M. Orrit, D. Möbius, U. Lehman, and H. Meyer, “Reflection and transmission of light by dye monolayers,” J. Chem. Phys. 85, 49664979 (1986).
http://dx.doi.org/10.1063/1.451735
34.
E. Da Como, M. A. Loi, M. Murgia, R. Zamboni, and M. Muccini, “J-aggregation in alpha-sexithiophene submonolayer films on silicon dioxide,” J. Am. Chem. Soc. 128, 42774281 (2006).
http://dx.doi.org/10.1021/ja056060s
35.
M. A. Loi, E. Da Como, F. Dinelli, M. Murgia, R. Zamboni, F. Biscarini, and M. Muccini, “Supramolecular organization in ultra-thin films of α-sexithiophene on silicon dioxide,” Nat. Mater. 4, 8185 (2005).
http://dx.doi.org/10.1038/nmat1279
36.
M. R. Philpott, “Absorption, transmission, and reflection spectra of mono- and bimolecular layers,” J. Chem. Phys. 61, 52955297 (1974).
http://dx.doi.org/10.1063/1.1681880
37.
K. Miyano, “Optics of Langmuir–Blodgett films: Are two-dimensional systems unique?,” Appl. Surf. Sci. 113–114, 299303 (1997).
http://dx.doi.org/10.1016/S0169-4332(96)00809-4
38.
N. D. Mermin and H. Wagner, “Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models,” Phys. Rev. Lett. 17, 11331136 (1966).
http://dx.doi.org/10.1103/PhysRevLett.17.1133
39.
J. M. Ziman, Elements of Advanced Quantum Theory (Cambridge University Press, 1969).
40.
R. D. Levine, Quantum Mechanics of Molecular Rate Processes (Oxford University Press, Oxford, 1969).
41.
J. R. Taylor, Scattering Theory (Wiley, New York, 1972).
42.
P. Roman, Advanced Quantum Theory (Addison Wesley, Reading, Massachusetts, 1965).
43.
W. T. Simpson and D. L. Peterson, “Coupling strength for resonance force transfer of electronic energy in van der Waals solids,” J. Chem. Phys. 26, 588593 (1957).
http://dx.doi.org/10.1063/1.1743351
44.
D. P. Craig and T. Thirunamachandran, Molecular Quantum Electrodynamics (Academic Press, London, 1984).
45.
D. Beljonne, J. Cornil, R. Silbey, P. Millié, and J. L. Brédas, “Interchain interactions in conjugated materials: The exciton model versus the supermolecular approach,” J. Chem. Phys. 112, 47494758 (2000).
http://dx.doi.org/10.1063/1.481031
46.
H. Fidder, J. Knoester, and D. A. Wiersma, “Optical properties of disordered molecular aggregates—a numerical study,” J. Chem. Phys. 95, 78807890 (1991).
http://dx.doi.org/10.1063/1.461317
47.
M. Schwoerer and H. C. Wolf, Organic Molecular Solids (Wiley VCH, Weinheim, 2007).
48.
J. Singh, Excitation Energy Transfer Processes in Condensed Matter: Theory and Applications (Springer Verlag, Berlin, 1994).
49.
J. Humblet, “Elastic scattering and the K-matrix,” Nucl. Phys. A 151, 225242 (1970).
http://dx.doi.org/10.1016/0375-9474(70)90276-9
50.
R. Moccia and P. Spizzo, “Lithium anion photodetachment up to the 3s threshold: a K-matrix L2 basis calculation,” J. Phys. B 23, 35573567 (1990).
http://dx.doi.org/10.1088/0953-4075/23/20/018
51.
D. Fröhlich, A. Kulik, B. Uebbing, A. Mysyrowicz, V. Langer, H. Stolz, and W. Von der Osten, “Coherent propagation and quantum beats of quadrupole polaritons in Cu2O,” Phys. Rev. Lett. 67, 23432346 (1991).
http://dx.doi.org/10.1103/PhysRevLett.67.2343
52.
A. P. Pleshkova, S. Setayesh, E. C. P. Smits, S. G. J. Mathijssen, D. M. de Leeuw, S. Kirchmeyer, and A. M. Muzafarov, “Synthesis of monochlorosilyl derivatives of dialkyloligothiophenes for self-assembling monolayer field-effect transistors,” Organometallics 29, 42134226 (2010).
http://dx.doi.org/10.1021/om100139y
53.
See supplementary material at http://dx.doi.org/10.1063/1.4952415 for random matrix calculation of the exciton coherence length and simulation of the influence of disorder on the band shape of reflection and extinction spectra.[Supplementary Material]
54.
G. Breit and E. Wigner, “Capture of slow neutrons,” Phys. Rev. 49, 519531 (1936).
http://dx.doi.org/10.1103/PhysRev.49.519
55.
M. R. Philpott and P. G. Sherman, “Excitons and polaritons in monomolecular layers,” Phys. Rev. B 12, 53815394 (1975).
http://dx.doi.org/10.1103/PhysRevB.12.5381
56.
F. Würthner, T. E. Kaiser, and C. R. Saha-Möller, “J-aggregates: From serendipitous discovery to supramolecular engineering of functional dye materials,” Angew. Chem., Int. Ed. 50, 33763410 (2011).
http://dx.doi.org/10.1002/anie.201002307
57.
F. C. Spano and C. Silva, “H- and J-aggregate behavior in polymeric semiconductors,” Ann. Rev. Phys. Chem. 65, 477500 (2014).
http://dx.doi.org/10.1146/annurev-physchem-040513-103639
58.
R. H. Dalitz, “On the strong interactions of strange particles,” Rev. Mod. Phys. 33, 471492 (1961).
http://dx.doi.org/10.1103/RevModPhys.33.471
59.
S. U. Chung, J. Brose, R. Hackmann, E. Klempt, S. Spanier, and C. Strassburger, “Partial wave analysis in K-Matrix formalism,” Ann. Phys. 507, 404430 (1995).
http://dx.doi.org/10.1002/andp.19955070504
60.
S. C. J. Meskers and G. Lakhwani, “A model for exciton-polaritons in uniaxial molecular crystals describing spatial dispersion, refraction and reflection,” e-print arXiv:1601.04014 [cond-mat.mtrl-sci].
http://aip.metastore.ingenta.com/content/aip/journal/jcp/144/21/10.1063/1.4952415
Loading
/content/aip/journal/jcp/144/21/10.1063/1.4952415
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/144/21/10.1063/1.4952415
2016-06-01
2016-09-30

Abstract

Scattering matrix theory is used to describe resonant optical properties of molecular monolayers. Three types of coupling are included: exciton-exciton, exciton-photon, and exciton-phonon coupling. We use the -matrix formalism, developed originally to describe neutron scattering spectra in nuclear physics to compute the scattering of polaritons by phonons. This perturbation approach takes into account the three couplings and allows one to go beyond molecular exciton theory without the need of introducing additional boundary conditions for the polariton. We demonstrate that reflection, absorption, and extinction of light by 2D self-assembled monolayers of molecules containing quinque-thiophene chromophoric groups can be calculated. The extracted coherence length of the Frenkel exciton is discussed.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/144/21/1.4952415.html;jsessionid=Fts0zxkntXGtUGUvgRt57Xi6.x-aip-live-06?itemId=/content/aip/journal/jcp/144/21/10.1063/1.4952415&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/144/21/10.1063/1.4952415&pageURL=http://scitation.aip.org/content/aip/journal/jcp/144/21/10.1063/1.4952415'
Right1,Right2,Right3,