Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
S. M. Barnett and R. Loudon, “The Enigma of optical momentum in a medium,” Philos. Trans. R. Soc., A 368, 927939 (2010).
R. N. C. Pfeifer, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Momentum of an electromagnetic wave in dielectric media,” Rev. Mod. Phys. 79, 11971216 (2007).
J. J. Hopfield, “Theory of the contribution of excitons to the complex dielectric constant of crystals,” Phys. Rev. 112, 15551567 (1958).
S. I. Pekar, “Theory of electromagnetic waves in a crystal with excitons,” J. Phys. Chem. Solids 6, 1122 (1958).
V. M. Agranovich, Excitations in Organic Solids (Oxford University Press, 2009).
C. F. Klingshirn, Semiconductor Optics, 4th ed. (Springer Verlag, Berlin, 2012).
K. Henneberger, “Additional boundary conditions: An historical mistake,” Phys. Rev. Lett. 80, 28892892 (1998).
D. F. Nelson and B. Chen, “Comment on ‘Additional boundary conditions: An historical mistake,’” Phys. Rev. Lett. 83, 1263 (1999).
R. Zeyher, “Comment on ‘Additional boundary conditions: An historical mistake,’” Phys. Rev. Lett. 83, 1264 (1999).
K. Henneberger, “Reply to comments on ‘Additional boundary conditions: An historical mistake,’” Phys. Rev. Lett. 83, 12651266 (1999).
J. Tignon, T. Hasche, D. S. Chemla, H. C. Schneider, F. Jahnke, and S. W. Koch, “Unified picture of polariton propagation in bulk GaAs semiconductors,” Phys. Rev. Lett. 84, 33823385 (2000).
H. M. Gibbs, G. Khitrova, and S. W. Koch, “Exciton-polariton light-semiconductor coupling effects,” Nat. Photonics 5, 275282 (2011).
H. C. Schneider, F. Jahnke, S. W. Koch, J. Tignon, T. Hasche, and D. S. Chemla, “Polariton propagation in high quality semiconductors: Microscopic theory and experiment versus additional boundary conditions,” Phys. Rev. B 63, 045202 (2001).
A. Berlin and G. Zotti, “Self-assembly of mono- and multilayers of polyconjugated conducting polymers,” Macromol. Rapid Commun. 21, 301318 (2000).<301::AID-MARC301>3.0.CO2-6
R. Michalitsch, P. Lang, A. Yassar, G. Nauer, and F. Garnier, “Properties of self-assembled monolayers (SAMs) from thiol-functionalized oligothiophenes,” Adv. Mater. 9, 321326 (1997).
C. Nogues, P. Lang, B. Desbat, T. Buffeteau, and L. Leiserowitz, “Two-dimensional crystal structure of a quaterthiophene-alkanethiol self-assembled monolayer on gold,” Langmuir 24, 84588564 (2008).
E. C. P. Smits, S. G. J. Mathijssen, P. A. van Hal, S. Setayesh, T. C. T. Geuns, K. A. H. A. Mutsaers, E. Cantatore, H. J. Wondergem, O. Werzer, R. Resel, M. Kemerink, S. Kirchmeyer, A. M. Muzafarov, S. A. Ponomarenko, B. de Boer, P. W. M. Blom, and D. M. de Leeuw, “Bottom-up organic integrated circuits,” Nature 455, 956959 (2008).
F. Gholamrezaie, S. G. J. Mathijssen, E. C. P. Smits, T. C. T. Geuns, P. A. van Hal, S. A. Ponomarenko, H. G. Flesch, R. Resel, E. Cantatore, P. W. M. Blom, and D. M. De Leeuw, “Ordered semiconducting self-assembled monolayers on polymeric surfaces utilized in organic integrated circuits,” Nano Lett. 10, 19982002 (2010).
F. Gholamrezaie, M. Kirkus, S. G. J. Mathijssen, D. M. de Leeuw, and S. C. J. Meskers, “Photophysics of self-assembled monolayers of a π-conjugated quinquethiophene derivative,” J. Phys. Chem. A 116, 76457650 (2012).
H.-J. Egelhaaf, P. Bäuerle, K. Rauer, V. Hoffmann, and D. Oelkrug, “UV/Vis and IR spectroscopic studies on molecular orientation in ultrathin films of polythiophene model compounds,” J. Mol. Struct. 293, 249252 (1993).
J. M. Turlet, Ph. Kottis, and M. R. Philpott, “Polariton and surface exciton state effects in the Photodynamics of organic molecular crystals,” Adv. Chem. Phys. 54, 303468 (1983).
M. R. Philpott, “Theory of vibronic coupling in the polariton states of molecular crystals,” J. Chem. Phys. 52, 58425850 (1970).
F. C. Spano, “The spectral signatures of Frenkel polarons in H- and j-aggregates,” Acc. Chem. Res. 43, 429439 (2010).
A. Halpin, P. J. M. Johnson, R. Tempelaar, R. S. Murphy, J. Knoester, T. L. C. Jansen, and R. J. D. Miller, “Two-dimensional spectroscopy of a molecular dimer unveils the effects of vibronic coupling on exciton coherences,” Nat. Chem. 6, 196201 (2014).
I. J. Lalov and I. Zhelyazkov, “Excitonic and vibronic spectra of Frenkel excitons in a two-dimensional simple lattice,” Chem. Phys. 410, 7180 (2013).
K. Song, S. Bai, and Q. Shi, “A time domain two-particle approximation to calculate the absorption and circular dichroism line shapes of molecular aggregates,” J. Chem. Phys. 143, 064109 (2015).
M. R. Philpott, “Theory of the coupling of electronic and vibrational excitations in molecular crystals and helical polymers,” J. Chem. Phys. 55, 20392054 (1971).
S. Möller, G. Weiser, and C. Taliani, “The role of electrodynamics in the spectra of organic crystals with mesoscopic order: Nanocrystalline α-sexithiophene,” Chem. Phys. 295, 1120 (2003).
P. Spearman, A. Borghesi, M. Campione, M. Laicini, M. Moret, and S. Tavazzi, “Directional dispersion in absorbance spectra of oligothiophene crystals,” J. Chem. Phys. 122, 014706 (2005).
A. Stradomska and P. Petelenz, “Polariton effects in electroabsorption of molecular crystals with several molecules in the unit cell—sexithiophene,” Org. Electron. 7, 551560 (2006).
M. R. Philpott and P. G. Sherman, “Excitons and polaritons in monomolecular layers,” Phys. Rev. B 12, 53815394 (1975).
D. Möbius, “Scheibe aggregates,” Adv. Mater. 7, 437444 (1995).
M. Orrit, D. Möbius, U. Lehman, and H. Meyer, “Reflection and transmission of light by dye monolayers,” J. Chem. Phys. 85, 49664979 (1986).
E. Da Como, M. A. Loi, M. Murgia, R. Zamboni, and M. Muccini, “J-aggregation in alpha-sexithiophene submonolayer films on silicon dioxide,” J. Am. Chem. Soc. 128, 42774281 (2006).
M. A. Loi, E. Da Como, F. Dinelli, M. Murgia, R. Zamboni, F. Biscarini, and M. Muccini, “Supramolecular organization in ultra-thin films of α-sexithiophene on silicon dioxide,” Nat. Mater. 4, 8185 (2005).
M. R. Philpott, “Absorption, transmission, and reflection spectra of mono- and bimolecular layers,” J. Chem. Phys. 61, 52955297 (1974).
K. Miyano, “Optics of Langmuir–Blodgett films: Are two-dimensional systems unique?,” Appl. Surf. Sci. 113–114, 299303 (1997).
N. D. Mermin and H. Wagner, “Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models,” Phys. Rev. Lett. 17, 11331136 (1966).
J. M. Ziman, Elements of Advanced Quantum Theory (Cambridge University Press, 1969).
R. D. Levine, Quantum Mechanics of Molecular Rate Processes (Oxford University Press, Oxford, 1969).
J. R. Taylor, Scattering Theory (Wiley, New York, 1972).
P. Roman, Advanced Quantum Theory (Addison Wesley, Reading, Massachusetts, 1965).
W. T. Simpson and D. L. Peterson, “Coupling strength for resonance force transfer of electronic energy in van der Waals solids,” J. Chem. Phys. 26, 588593 (1957).
D. P. Craig and T. Thirunamachandran, Molecular Quantum Electrodynamics (Academic Press, London, 1984).
D. Beljonne, J. Cornil, R. Silbey, P. Millié, and J. L. Brédas, “Interchain interactions in conjugated materials: The exciton model versus the supermolecular approach,” J. Chem. Phys. 112, 47494758 (2000).
H. Fidder, J. Knoester, and D. A. Wiersma, “Optical properties of disordered molecular aggregates—a numerical study,” J. Chem. Phys. 95, 78807890 (1991).
M. Schwoerer and H. C. Wolf, Organic Molecular Solids (Wiley VCH, Weinheim, 2007).
J. Singh, Excitation Energy Transfer Processes in Condensed Matter: Theory and Applications (Springer Verlag, Berlin, 1994).
J. Humblet, “Elastic scattering and the K-matrix,” Nucl. Phys. A 151, 225242 (1970).
R. Moccia and P. Spizzo, “Lithium anion photodetachment up to the 3s threshold: a K-matrix L2 basis calculation,” J. Phys. B 23, 35573567 (1990).
D. Fröhlich, A. Kulik, B. Uebbing, A. Mysyrowicz, V. Langer, H. Stolz, and W. Von der Osten, “Coherent propagation and quantum beats of quadrupole polaritons in Cu2O,” Phys. Rev. Lett. 67, 23432346 (1991).
A. P. Pleshkova, S. Setayesh, E. C. P. Smits, S. G. J. Mathijssen, D. M. de Leeuw, S. Kirchmeyer, and A. M. Muzafarov, “Synthesis of monochlorosilyl derivatives of dialkyloligothiophenes for self-assembling monolayer field-effect transistors,” Organometallics 29, 42134226 (2010).
See supplementary material at for random matrix calculation of the exciton coherence length and simulation of the influence of disorder on the band shape of reflection and extinction spectra.[Supplementary Material]
G. Breit and E. Wigner, “Capture of slow neutrons,” Phys. Rev. 49, 519531 (1936).
M. R. Philpott and P. G. Sherman, “Excitons and polaritons in monomolecular layers,” Phys. Rev. B 12, 53815394 (1975).
F. Würthner, T. E. Kaiser, and C. R. Saha-Möller, “J-aggregates: From serendipitous discovery to supramolecular engineering of functional dye materials,” Angew. Chem., Int. Ed. 50, 33763410 (2011).
F. C. Spano and C. Silva, “H- and J-aggregate behavior in polymeric semiconductors,” Ann. Rev. Phys. Chem. 65, 477500 (2014).
R. H. Dalitz, “On the strong interactions of strange particles,” Rev. Mod. Phys. 33, 471492 (1961).
S. U. Chung, J. Brose, R. Hackmann, E. Klempt, S. Spanier, and C. Strassburger, “Partial wave analysis in K-Matrix formalism,” Ann. Phys. 507, 404430 (1995).
S. C. J. Meskers and G. Lakhwani, “A model for exciton-polaritons in uniaxial molecular crystals describing spatial dispersion, refraction and reflection,” e-print arXiv:1601.04014 [cond-mat.mtrl-sci].

Data & Media loading...


Article metrics loading...



Scattering matrix theory is used to describe resonant optical properties of molecular monolayers. Three types of coupling are included: exciton-exciton, exciton-photon, and exciton-phonon coupling. We use the -matrix formalism, developed originally to describe neutron scattering spectra in nuclear physics to compute the scattering of polaritons by phonons. This perturbation approach takes into account the three couplings and allows one to go beyond molecular exciton theory without the need of introducing additional boundary conditions for the polariton. We demonstrate that reflection, absorption, and extinction of light by 2D self-assembled monolayers of molecules containing quinque-thiophene chromophoric groups can be calculated. The extracted coherence length of the Frenkel exciton is discussed.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd