Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/144/22/10.1063/1.4953039
1.
P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
http://dx.doi.org/10.1103/PhysRev.136.B864
2.
E. Runge and E. K. U. Gross, Phys. Rev. Lett. 52, 997 (1984).
http://dx.doi.org/10.1103/PhysRevLett.52.997
3.
F. Bloch, Z. Phys. 81, 363 (1933).
http://dx.doi.org/10.1007/BF01344553
4.
S. Lundqvist, in Theory of the Inhomogeneous Electron Gas, edited by S. Lundqvist and N. H. March (Springer US, Boston, MA, 1983), pp. 149188.
5.
T. Ando, Z. Phys. B: Condens. Matter Quanta 26, 263 (1977).
http://dx.doi.org/10.1007/bf01312933
6.
T. Ando, Solid State Commun. 21, 133 (1977).
http://dx.doi.org/10.1016/0038-1098(77)91495-8
7.
V. Peuckert, J. Phys. C: Solid State Phys. 11, 4945 (1978).
http://dx.doi.org/10.1088/0022-3719/11/24/023
8.
B. M. Deb and S. K. Ghosh, J. Chem. Phys. 77, 342 (1982).
http://dx.doi.org/10.1063/1.443611
9.
L. J. Bartolotti, Phys. Rev. A 24, 1661 (1981).
http://dx.doi.org/10.1103/PhysRevA.24.1661
10.
L. J. Bartolotti, Phys. Rev. A 26, 2243 (1982).
http://dx.doi.org/10.1103/PhysRevA.26.2243
11.
J. F. Dobson, in Fundamentals of Time-Dependent Density Functional Theory, edited byM. A. Marques, N. T. Maitra, F. M. Nogueira, E. Gross, and A. Rubio  (Springer Berlin Heidelberg, Berlin, Heidelberg, 2012), pp. 417441.
12.
E. K. Gross and N. T. Maitra, in Fundamentals of Time-Dependent Density Functional Theory, edited by M. A. Marques, N. T. Maitra, F. M. Nogueira, E. K. Gross, and A. Rubio (Springer-Verlag, 2012), pp. 5397.
13.
C. A. Ullrich, Time-Dependent Density-Functional Theory: Concepts and Applications (Oxford University Press, 2011).
14.
J. E. Harriman, Phys. Rev. A 24, 680 (1981).
http://dx.doi.org/10.1103/PhysRevA.24.680
15.
G. Zumbach and K. Maschke, Phys. Rev. A 28, 544 (1983).
http://dx.doi.org/10.1103/PhysRevA.28.544
16.
N. T. Maitra, K. Burke, and C. Woodward, Phys. Rev. Lett. 89, 023002 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.023002
17.
N. T. Maitra, in Fundamentals of Time-Dependent Density Functional Theory, edited byM. A. Marques, N. T. Maitra, F. M. Nogueira, E. K. Gross, and A. Rubio (Springer-Verlag, 2012), pp. 167184.
18.
E. K. U. Gross, J. F. Dobson, and M. Petersilka, in Density Functional Theory II: Relativistic and Time Dependent Extensions, edited by R. F. Nalewajski (Springer Berlin Heidelberg, Berlin, Heidelberg, 1996), pp. 81172.
19.
R. van Leeuwen, Phys. Rev. Lett. 80, 1280 (1998).
http://dx.doi.org/10.1103/PhysRevLett.80.1280
20.
S. Mukamel, Phys. Rev. A 71, 024503 (2005).
http://dx.doi.org/10.1103/PhysRevA.71.024503
21.
G. Vignale, Phys. Rev. A 77, 062511 (2008).
http://dx.doi.org/10.1103/PhysRevA.77.062511
22.
R. van Leeuwen, Phys. Rev. Lett. 82, 3863 (1999).
http://dx.doi.org/10.1103/PhysRevLett.82.3863
23.
T. K. Ng and K. S. Singwi, Phys. Rev. Lett. 59, 2627 (1987).
http://dx.doi.org/10.1103/PhysRevLett.59.2627
24.
R. van Leeuwen, Int. J. Mod. Phys. B 15, 1969 (2001).
http://dx.doi.org/10.1142/S021797920100499X
25.
N. T. Maitra, T. N. Todorov, C. Woodward, and K. Burke, Phys. Rev. A 81, 042525 (2010).
http://dx.doi.org/10.1103/PhysRevA.81.042525
26.
M. Ruggenthaler and R. van Leeuwen, Europhys. Lett. 95, 13001 (2011).
http://dx.doi.org/10.1209/0295-5075/95/13001
27.
M. Ruggenthaler, K. Giesbertz, M. Penz, and R. van Leeuwen, Phys. Rev. A 85, 052504 (2012).
http://dx.doi.org/10.1103/PhysRevA.85.052504
28.
M. Penz and M. Ruggenthaler, J. Phys. A: Math. Theor. 44, 335208 (2011).
http://dx.doi.org/10.1088/1751-8113/44/33/335208
29.
S. Nielsen, M. Ruggenthaler, and R. van Leeuwen, Europhys. Lett. 101, 33001 (2013).
http://dx.doi.org/10.1209/0295-5075/101/33001
30.
M. Ruggenthaler, S. E. Nielsen, and R. van Leeuwen, Phys. Rev. A 88, 022512 (2013).
http://dx.doi.org/10.1103/PhysRevA.88.022512
31.
J. I. Fuks, S. Nielsen, M. Ruggenthaler, and N. Maitra, “Time-dependent density functional theory beyond Kohn–Sham Slater determinants,” Phys. Chem. Chem. Phys. (published online).
http://dx.doi.org/10.1039/C6CP00722H
32.
M. Ruggenthaler, M. Penz, and R. van Leeuwen, J. Phys. Condens. Matter 27, 203202 (2015).
http://dx.doi.org/10.1088/0953-8984/27/20/203202
33.
I. V. Tokatly, Phys. Rev. B 83, 035127 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.035127
34.
M. Farzanehpour and I. V. Tokatly, Phys. Rev. B 86, 125130 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.125130
35.
R. D’Agosta and G. Vignale, Phys. Rev. B 71, 245103 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.245103
36.
E. H. Lieb and R. Schrader, Phys. Rev. A 88, 032516 (2013).
http://dx.doi.org/10.1103/PhysRevA.88.032516
37.
B.-X. Xu and A. K. Rajagopal, Phys. Rev. A 31, 2682 (1985).
http://dx.doi.org/10.1103/PhysRevA.31.2682
38.
T. K. Ng, Phys. Rev. Lett. 62, 2417 (1989).
http://dx.doi.org/10.1103/PhysRevLett.62.2417
39.
S. K. Ghosh and A. K. Dhara, Phys. Rev. A 38, 1149 (1988).
http://dx.doi.org/10.1103/PhysRevA.38.1149
40.
G. Vignale and W. Kohn, Phys. Rev. Lett. 77, 2037 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.2037
41.
G. Vignale, Phys. Rev. B 70, 201102 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.201102
42.
I. V. Tokatly, Phys. Rev. B 75, 125105 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.125105
43.
I. Tokatly, Chem. Phys. 391, 78 (2011).
http://dx.doi.org/10.1016/j.chemphys.2011.04.005
44.
J. F. Dobson, M. J. Bünner, and E. K. U. Gross, Phys. Rev. Lett. 79, 1905 (1997).
http://dx.doi.org/10.1103/PhysRevLett.79.1905
45.
J. F. Dobson, Phys. Rev. Lett. 73, 2244 (1994).
http://dx.doi.org/10.1103/PhysRevLett.73.2244
46.
E. K. U. Gross and W. Kohn, Phys. Rev. Lett. 55, 2850 (1985).
http://dx.doi.org/10.1103/PhysRevLett.55.2850
47.
G. Vignale, Phys. Rev. Lett. 74, 3233 (1995).
http://dx.doi.org/10.1103/PhysRevLett.74.3233
48.
G. Vignale, C. A. Ullrich, and S. Conti, Phys. Rev. Lett. 79, 4878 (1997).
http://dx.doi.org/10.1103/PhysRevLett.79.4878
49.
G. Vignale and W. Kohn, in Electronic Density Functional Theory: Recent Progress and New Directions, edited by J. F. Dobson, G. Vignale, and M. P. Das (Springer US, Boston, MA, 1998), pp. 199216.
50.
G. Giuliani and G. Vignale, Quantum Theory of the Electron Liquid, Masters Series in Physics and Astronomy (Cambridge University Press, 2005).
51.
R. D’Agosta and G. Vignale, Phys. Rev. Lett. 96, 016405 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.016405
52.
C. A. Ullrich, J. Chem. Phys. 125, 234108 (2006).
http://dx.doi.org/10.1063/1.2406069
53.
V. U. Nazarov, J. M. Pitarke, Y. Takada, G. Vignale, and Y.-C. Chang, Phys. Rev. B 76, 205103 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.205103
54.
I. D’Amico and C. A. Ullrich, Phys. Rev. B 74, 121303 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.121303
55.
C. A. Ullrich and G. Vignale, Phys. Rev. B 58, 15756 (1998).
http://dx.doi.org/10.1103/PhysRevB.58.15756
56.
N. Sai, M. Zwolak, G. Vignale, and M. Di Ventra, Phys. Rev. Lett. 94, 186810 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.186810
57.
M. van Faassen, P. L. de Boeij, R. van Leeuwen, J. A. Berger, and J. G. Snijders, Phys. Rev. Lett. 88, 186401 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.186401
58.
J. A. Berger, P. L. de Boeij, and R. van Leeuwen, Phys. Rev. B 75, 035116 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.035116
59.
P. Elliott, J. I. Fuks, A. Rubio, and N. T. Maitra, Phys. Rev. Lett. 109, 266404 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.266404
60.
J. Ramsden and R. Godby, Phys. Rev. Lett. 109, 036402 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.036402
61.
N. T. Maitra, R. van Leeuwen, and K. Burke, Phys. Rev. A 78, 056501 (2008).
http://dx.doi.org/10.1103/PhysRevA.78.056501
62.
M. Ruggenthaler and D. Bauer, Phys. Rev. A 80, 052502 (2009).
http://dx.doi.org/10.1103/PhysRevA.80.052502
63.
N. T. Maitra and K. Burke, Phys. Rev. A 63, 042501 (2001).
http://dx.doi.org/10.1103/PhysRevA.63.042501
64.
K. Luo, J. I. Fuks, E. D. Sandoval, P. Elliott, and N. T. Maitra, J. Chem. Phys 140, 18A515 (2014).
http://dx.doi.org/10.1063/1.4867002
65.
P. Hessler, N. T. Maitra, and K. Burke, J. Chem. Phys. 117, 72 (2002).
http://dx.doi.org/10.1063/1.1479349
66.
M. Thiele, E. K. U. Gross, and S. Kümmel, Phys. Rev. Lett. 100, 153004 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.153004
67.
C. A. Ullrich, U. J. Gossmann, and E. K. U. Gross, Phys. Rev. Lett. 74, 872 (1995).
http://dx.doi.org/10.1103/PhysRevLett.74.872
68.
H. O. Wijewardane and C. A. Ullrich, Phys. Rev. Lett. 100, 056404 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.056404
69.
D. Hofmann, T. Körzdörfer, and S. Kümmel, Phys. Rev. Lett. 108, 146401 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.146401
70.
M. Mundt, S. Kümmel, R. van Leeuwen, and P.-G. Reinhard, Phys. Rev. A 75, 050501 (2007).
http://dx.doi.org/10.1103/PhysRevA.75.050501
71.
J. Sun, A. Ruzsinszky, and J. P. Perdew, Phys. Rev. Lett. 115, 036402 (2015).
http://dx.doi.org/10.1103/PhysRevLett.115.036402
72.
C.-O. Almbladh and U. von Barth, Phys. Rev. B 31, 3231 (1985).
http://dx.doi.org/10.1103/PhysRevB.31.3231
73.
J. I. Fuks, K. Luo, E. D. Sandoval, and N. T. Maitra, Phys. Rev. Lett. 114, 183002 (2015).
http://dx.doi.org/10.1103/PhysRevLett.114.183002
74.
C. Adamo and D. Jacquemin, Chem. Soc. Rev. 42, 845 (2013).
http://dx.doi.org/10.1039/C2CS35394F
75.
D. Jacquemin, V. Wathelet, E. A. Perpéte, and C. Adamo, J. Chem. Theory Comput. 5, 2420 (2009).
http://dx.doi.org/10.1021/ct900298e
76.
P. Elliott, F. Furche, and K. Burke, in Reviews in Computational Chemistry, edited byK. B. Lipkowitz and T. R. Cundari (Wiley, Hoboken, NJ, 2009), pp. 91165.
77.
M. Casida and M. Huix-Rotllant, Annu. Rev. Phys. Chem. 63, 287 (2012).
http://dx.doi.org/10.1146/annurev-physchem-032511-143803
78.
M. E. Casida and M. Huix-Rotllant, in Density-Functional Methods for Excited States, edited by N. Ferré, M. Filatov, and M. Huix-Rotllant (Springer International Publishing, Cham, 2016), pp. 160.
79.
C. A. Ullrich and Z.-h. Yang, Braz. J. Phys. 44, 154 (2013).
http://dx.doi.org/10.1007/s13538-013-0141-2
80.
S. Botti, A. Schindlmayr, R. D. Sole, and L. Reining, Rep. Prog. Phys. 70, 357 (2007).
http://dx.doi.org/10.1088/0034-4885/70/3/R02
81.
A. M. Conte, O. Pulci, M. C. Misiti, J. Lojewska, L. Teodonio, C. Violante, and M. Missori, Appl. Phys. Lett. 104, 224101 (2014).
http://dx.doi.org/10.1063/1.4879838
82.
J. Jornet-Somoza, J. Alberdi-Rodriguez, B. F. Milne, X. Andrade, M. A. L. Marques, F. Nogueira, M. J. T. Oliveira, J. J. P. Stewart, and A. Rubio, Phys. Chem. Chem. Phys. 17, 26599 (2015).
http://dx.doi.org/10.1039/C5CP03392F
83.
D. M. Roessler and W. C. Walker, J. Opt. Soc. Am. 57, 835 (1967).
http://dx.doi.org/10.1364/JOSA.57.000835
84.
A. Marini, R. Del Sole, and A. Rubio, Phys. Rev. Lett. 91, 256402 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.256402
85.
S. Botti, A. Fourreau, F. Nguyen, Y.-O. Renault, F. Sottile, and L. Reining, Phys. Rev. B 72, 125203 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.125203
86.
S. Sharma, J. K. Dewhurst, A. Sanna, and E. K. U. Gross, Phys. Rev. Lett. 107, 186401 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.186401
87.
P. E. Trevisanutto, A. Terentjevs, L. A. Constantin, V. Olevano, and F. D. Sala, Phys. Rev. B 87, 205143 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.205143
88.
S. Rigamonti, S. Botti, V. Veniard, C. Draxl, L. Reining, and F. Sottile, Phys. Rev. Lett. 114, 146402 (2015).
http://dx.doi.org/10.1103/PhysRevLett.114.146402
89.
Z.-h. Yang, F. Sottile, and C. A. Ullrich, Phys. Rev. B 92, 035202 (2015).
http://dx.doi.org/10.1103/PhysRevB.92.035202
90.
S. Refaely-Abramson, M. Jain, S. Sharifzadeh, J. B. Neaton, and L. Kronik, Phys. Rev. B 92, 081204 (2015).
http://dx.doi.org/10.1103/PhysRevB.92.081204
91.
L. Goerigk, J. Moellmann, and S. Grimme, Phys. Chem. Chem. Phys. 11, 4611 (2009).
http://dx.doi.org/10.1039/b902315a
92.
D. Rappoport and J. Hutter, in Fundamentals of Time-Dependent Density Functional Theory, edited by M. A. Marques, N. T. Maitra, F. M. Nogueira, E. Gross, and A. Rubio (Springer Berlin Heidelberg, Berlin, Heidelberg, 2012), pp. 317336.
93.
M. Petersilka, U. J. Gossmann, and E. K. U. Gross, Phys. Rev. Lett. 76, 1212 (1996).
http://dx.doi.org/10.1103/PhysRevLett.76.1212
94.
M. Petersilka and E. K. U. Gross, Int. J. Quantum Chem. 60, 1393 (1996).
http://dx.doi.org/10.1002/(SICI)1097-461X(1996)60:7<1393::AID-QUA21>3.0.CO;2-4
95.
M. Casida, in Recent Advances in Density Functional Methods, Part I, edited by D. Chong (World Scientific, Singapore, 1995).
96.
M. E. Casida, in Recent Developments and Applications of Modern Density Functional Theory, edited by J. M. Seminario (Elsevier, Amsterdam, 1996), p. 391.
97.
R. Bauernschmitt and R. Ahlrichs, Chem. Phys. Lett. 256, 454 (1996).
http://dx.doi.org/10.1016/0009-2614(96)00440-X
98.
T. Grabo, M. Petersilka, and E. Gross, J. Mol. Struct.: THEOCHEM 501, 353 (2000).
http://dx.doi.org/10.1016/S0166-1280(99)00445-5
99.
R. M. Sternheimer, Phys. Rev. 96, 951 (1954).
http://dx.doi.org/10.1103/PhysRev.96.951
100.
X. Andrade, S. Botti, M. A. L. Marques, and A. Rubio, J. Chem. Phys. 126, 184106 (2007).
http://dx.doi.org/10.1063/1.2733666
101.
D. A. Strubbe, L. Lehtovaara, A. Rubio, M. A. Marques, and S. G. Louie, in Fundamentals of Time-Dependent Density Functional Theory, edited by M. A. Marques, N. T. Maitra, F. M. Nogueira, E. Gross, and A. Rubio (Springer Berlin Heidelberg, 2012), pp. 139166.
102.
K. Yabana, T. Nakatsukasa, J.-I. Iwata, and G. Bertsch, Phys. Status Solidi B 243, 1121 (2006).
http://dx.doi.org/10.1002/pssb.200642005
103.
M. E. Casida, C. Jamorski, K. C. Casida, and D. R. Salahub, J. Chem. Phys. 108, 4439 (1998).
http://dx.doi.org/10.1063/1.475855
104.
D. J. Tozer and N. C. Handy, J. Chem. Phys. 109, 10180 (1998).
http://dx.doi.org/10.1063/1.477711
105.
D. J. Tozer and N. C. Handy, Phys. Chem. Chem. Phys. 2, 2117 (2000).
http://dx.doi.org/10.1039/a910321j
106.
M. E. Casida and D. R. Salahub, J. Chem. Phys. 113, 8918 (2000).
http://dx.doi.org/10.1063/1.1319649
107.
A. Wasserman, N. T. Maitra, and K. Burke, Phys. Rev. Lett. 91, 263001 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.263001
108.
R. van Leeuwen and E. J. Baerends, Phys. Rev. A 49, 2421 (1994).
http://dx.doi.org/10.1103/PhysRevA.49.2421
109.
A. Görling, Phys. Rev. Lett. 83, 5459 (1999).
http://dx.doi.org/10.1103/PhysRevLett.83.5459
110.
F. Della Sala and A. Görling, Int. J. Quantum Chem. 91, 131 (2003).
http://dx.doi.org/10.1002/qua.10425
111.
K. B. Wiberg, R. Stratmann, and M. J. Frisch, Chem. Phys. Lett. 297, 60 (1998).
http://dx.doi.org/10.1016/S0009-2614(98)01119-1
112.
D. J. Tozer, R. D. Amos, N. C. Handy, B. O. Roos, and L. Serrano-Andres, Mol. Phys. 97, 859 (1999).
http://dx.doi.org/10.1080/00268979909482888
113.
Y. Zhao and D. G. Truhlar, J. Phys. Chem. A 110, 13126 (2006).
http://dx.doi.org/10.1021/jp066479k
114.
M. J. G. Peach, A. J. Cohen, and D. J. Tozer, Phys. Chem. Chem. Phys. 8, 4543 (2006).
http://dx.doi.org/10.1039/B608553A
115.
M. J. G. Peach, P. Benfield, T. Helgaker, and D. J. Tozer, J. Chem. Phys. 128, 044118 (2008).
http://dx.doi.org/10.1063/1.2831900
116.
T. Yanai, D. P. Tew, and N. C. Handy, Chem. Phys. Lett. 393, 51 (2004).
http://dx.doi.org/10.1016/j.cplett.2004.06.011
117.
A. Savin, in Recent Developments and Applications of Modern Density Functional Theory, edited by J. M. Seminario   (Elsevier, 1996), pp. 327354.
118.
T. Leininger, H. Stoll, H.-J. Werner, and A. Savin, Chem. Phys. Lett. 275, 151 (1997).
http://dx.doi.org/10.1016/S0009-2614(97)00758-6
119.
A. Seidl, A. Görling, P. Vogl, J. A. Majewski, and M. Levy, Phys. Rev. B 53, 3764 (1996).
http://dx.doi.org/10.1103/PhysRevB.53.3764
120.
C. Jamorski, M. E. Casida, and D. R. Salahub, J. Chem. Phys. 104, 5134 (1996).
http://dx.doi.org/10.1063/1.471140
121.
N. T. Maitra, F. Zhang, R. J. Cave, and K. Burke, J. Chem. Phys. 120, 5932 (2004).
http://dx.doi.org/10.1063/1.1651060
122.
P. Elliott, S. Goldson, C. Canahui, and N. T. Maitra, Chem. Phys. 391, 110 (2011).
http://dx.doi.org/10.1016/j.chemphys.2011.03.020
123.
R. J. Cave, F. Zhang, N. T. Maitra, and K. Burke, Chem. Phys. Lett. 389, 39 (2004).
http://dx.doi.org/10.1016/j.cplett.2004.03.051
124.
M. E. Casida, J. Chem. Phys. 122, 054111 (2005).
http://dx.doi.org/10.1063/1.1836757
125.
M. Huix-Rotllant, A. Ipatov, A. Rubio, and M. E. Casida, Chem. Phys. 391, 120 (2011).
http://dx.doi.org/10.1016/j.chemphys.2011.03.019
126.
P. Romaniello, D. Sangalli, J. A. Berger, F. Sottile, L. G. Molinari, L. Reining, and G. Onida, J. Chem. Phys. 130, 044108 (2009).
http://dx.doi.org/10.1063/1.3065669
127.
O. V. Gritsenko and E. J. Baerends, Phys. Chem. Chem. Phys. 11, 4640 (2009).
http://dx.doi.org/10.1039/b903123e
128.
G. Mazur, M. Makowski, R. Wldarczyk, and Y. Aoki, Int. J. Quantum Chem. 111, 819 (2011).
http://dx.doi.org/10.1002/qua.22876
129.
G. Mazur and R. Wlodarczyk, J. Comput. Chem. 30, 811 (2009).
http://dx.doi.org/10.1002/jcc.21102
130.
A. Dreuw, J. L. Weisman, and M. Head-Gordon, J. Chem. Phys. 119, 2943 (2003).
http://dx.doi.org/10.1063/1.1590951
131.
D. J. Tozer, J. Chem. Phys. 119, 12697 (2003).
http://dx.doi.org/10.1063/1.1633756
132.
A. Dreuw and M. Head-Gordon, J. Am. Chem. Soc. 126, 4007 (2004).
http://dx.doi.org/10.1021/ja039556n
133.
O. Gritsenko and E. J. Baerends, J. Chem. Phys. 121, 655 (2004).
http://dx.doi.org/10.1063/1.1759320
134.
Y. Tawada, T. Tsuneda, S. Yanagisawa, T. Yanai, and K. Hirao, J. Chem. Phys. 120, 8425 (2004).
http://dx.doi.org/10.1063/1.1688752
135.
M. A. Rohrdanz, K. M. Martins, and J. M. Herbert, J. Chem. Phys. 130, 054112 (2009).
http://dx.doi.org/10.1063/1.3073302
136.
J. Autschbach, ChemPhysChem 10, 1757 (2009).
http://dx.doi.org/10.1002/cphc.200900268
137.
T. Stein, L. Kronik, and R. Baer, J. Am. Chem. Soc. 131, 2818 (2009).
http://dx.doi.org/10.1021/ja8087482
138.
R. Baer, E. Livshits, and U. Salzner, Annu. Rev. Phys. Chem. 61, 85 (2010).
http://dx.doi.org/10.1146/annurev.physchem.012809.103321
139.
A. Heßelmann, A. Ipatov, and A. Görling, Phys. Rev. A 80, 012507 (2009).
http://dx.doi.org/10.1103/PhysRevA.80.012507
140.
A. Karolewski, L. Kronik, and S. Kümmel, J. Chem. Phys. 138, 204115 (2013).
http://dx.doi.org/10.1063/1.4807325
141.
M. Hellgren and E. K. U. Gross, Phys. Rev. A 85, 022514 (2012).
http://dx.doi.org/10.1103/PhysRevA.85.022514
142.
N. T. Maitra, J. Chem. Phys. 122, 234104 (2005).
http://dx.doi.org/10.1063/1.1924599
143.
N. T. Maitra and D. G. Tempel, J. Chem. Phys. 125, 184111 (2006).
http://dx.doi.org/10.1063/1.2387951
144.
B. G. Levine, C. Ko, J. Quenneville, and T. J. Martinez, Mol. Phys. 104, 1039 (2006).
http://dx.doi.org/10.1080/00268970500417762
145.
E. Tapavicza, I. Tavernelli, U. Rothlisberger, C. Filippi, and M. E. Casida, J. Chem. Phys. 129, 124108 (2008).
http://dx.doi.org/10.1063/1.2978380
146.
A. A. Quong and A. G. Eguiluz, Phys. Rev. Lett. 70, 3955 (1993).
http://dx.doi.org/10.1103/PhysRevLett.70.3955
147.
G. Onida, L. Reining, and A. Rubio, Rev. Mod. Phys. 74, 601 (2002).
http://dx.doi.org/10.1103/RevModPhys.74.601
148.
H.-C. Weissker, J. Serrano, S. Huotari, F. Bruneval, F. Sottile, G. Monaco, M. Krisch, V. Olevano, and L. Reining, Phys. Rev. Lett. 97, 237602 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.237602
149.
L. Reining, V. Olevano, A. Rubio, and G. Onida, Phys. Rev. Lett. 88, 066404 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.066404
150.
I. V. Tokatly and O. Pankratov, Phys. Rev. Lett. 86, 2078 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.2078
151.
C. A. Ullrich and Z.-H. Yang, in Density-Functional Methods for Excited States, edited byN. Ferré, M. Filatov, and M. Huix-Rotllant  (Springer International Publishing, Cham, 2016), Vol. 368, pp. 185217.
152.
G. Vignale, in Fundamentals of Time-Dependent Density Functional Theory, edited byM. A. Marques, N. T. Maitra, F. M. Nogueira, E. Gross, and A. Rubio (Springer Berlin Heidelberg, 2012), pp. 457469.
153.
Z. H. Levine and D. C. Allan, Phys. Rev. Lett. 63, 1719 (1989).
http://dx.doi.org/10.1103/PhysRevLett.63.1719
154.
X. Gonze, P. Ghosez, and R. W. Godby, Phys. Rev. Lett. 74, 4035 (1995).
http://dx.doi.org/10.1103/PhysRevLett.74.4035
155.
Z.-h. Yang, Y. Li, and C. A. Ullrich, J. Chem. Phys. 137, 014513 (2012).
http://dx.doi.org/10.1063/1.4730031
156.
Y.-H. Kim and A. Görling, Phys. Rev. Lett. 89, 096402 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.096402
157.
F. Bruneval, F. Sottile, V. Olevano, and L. Reining, J. Chem. Phys. 124, 144113 (2006).
http://dx.doi.org/10.1063/1.2186996
158.
F. Sottile, V. Olevano, and L. Reining, Phys. Rev. Lett. 91, 056402 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.056402
159.
S. Botti, F. Sottile, N. Vast, V. Olevano, L. Reining, H.-C. Weissker, A. Rubio, G. Onida, R. Del Sole, and R. W. Godby, Phys. Rev. B 69, 155112 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.155112
160.
J. A. Berger, Phys. Rev. Lett. 115, 137402 (2015).
http://dx.doi.org/10.1103/PhysRevLett.115.137402
161.
V. U. Nazarov and G. Vignale, Phys. Rev. Lett. 107, 216402 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.216402
162.
L. Bernasconi, S. Tomić, M. Ferrero, M. Rérat, R. Orlando, R. Dovesi, and N. M. Harrison, Phys. Rev. B 83, 195325 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.195325
163.
V. Turkowski, A. Leonardo, and C. A. Ullrich, Phys. Rev. B 79, 233201 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.233201
164.
Z.-h. Yang and C. A. Ullrich, Phys. Rev. B 87, 195204 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.195204
165.
J. P. Perdew, R. G. Parr, M. Levy, and J. L. Balduz, Phys. Rev. Lett. 49, 1691 (1982).
http://dx.doi.org/10.1103/PhysRevLett.49.1691
166.
C. Toher, A. Filippetti, S. Sanvito, and K. Burke, Phys. Rev. Lett. 95, 146402 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.146402
167.
M. Koentopp, C. Chang, K. Burke, and R. Car, J. Phys. Condens. Matter 20, 083203 (2008).
http://dx.doi.org/10.1088/0953-8984/20/8/083203
168.
S. Kurth, G. Stefanucci, E. Khosravi, C. Verdozzi, and E. K. U. Gross, Phys. Rev. Lett. 104, 236801 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.236801
169.
S. Kurth and G. Stefanucci, Phys. Rev. Lett. 111, 030601 (2013).
http://dx.doi.org/10.1103/PhysRevLett.111.030601
170.
P. Schmitteckert, M. Dzierzawa, and P. Schwab, Phys. Chem. Chem. Phys. 15, 5477 (2013).
http://dx.doi.org/10.1039/c3cp44639e
171.
G. Stefanucci and C.-O. Almbladh, Phys. Rev. B 69, 195318 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.195318
172.
G. Stefanucci and C.-O. Almbladh, Europhys. Lett. 67, 14 (2004).
http://dx.doi.org/10.1209/epl/i2004-10043-7
173.
K. Burke, R. Car, and R. Gebauer, Phys. Rev. Lett. 94, 146803 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.146803
174.
J. Yuen-Zhou, D. Tempel, C. Rodriguez-Rosario, and A. Aspuru-Guzik, Phys. Rev. Lett. 104, 043001 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.043001
175.
M. di Ventra and R. d’Agosta, Phys. Rev. Lett. 98, 226403 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.226403
176.
X. Zheng, F. Wang, C. Yam, Y. Mo, and G.-H. Chen, Phys. Rev. B 75, 195127 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.195127
177.
D. Neuhauser and K. Lopata, J. Chem. Phys. 129, 134106 (2008).
http://dx.doi.org/10.1063/1.2985650
178.
A. J. Cohen, P. Mori-Sánchez, and W. Yang, Science 321, 792 (2008).
http://dx.doi.org/10.1126/science.1158722
179.
A. J. Cohen, P. Mori-Sánchez, and W. Yang, Chem. Rev. 112, 289 (2012).
http://dx.doi.org/10.1021/cr200107z
180.
E. Kraisler and L. Kronik, Phys. Rev. Lett. 110, 126403 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.126403
181.
A. Görling, Phys. Rev. B 91, 245120 (2015).
http://dx.doi.org/10.1103/PhysRevB.91.245120
182.
L. Kronik, T. Stein, S. Refaely-Abramson, and R. Baer, J. Chem. Theory Comput. 8, 1515 (2012).
http://dx.doi.org/10.1021/ct2009363
183.
J. B. Neaton, M. S. Hybertsen, and S. G. Louie, Phys. Rev. Lett. 97, 216405 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.216405
184.
D. A. Egger, Z.-F. Liu, J. B. Neaton, and L. Kronik, Nano Lett. 15, 2448 (2015).
http://dx.doi.org/10.1021/nl504863r
185.
F. D. Angelis, Acc. Chem. Res. 47, 3349 (2014).
http://dx.doi.org/10.1021/ar500089n
186.
A. Migani, D. J. Mowbray, A. Iacomino, J. Zhao, H. Petek, and A. Rubio, J. Am. Chem. Soc. 135, 11429 (2013).
http://dx.doi.org/10.1021/ja4036994
187.
Y. Shinohara, K. Yabana, Y. Kawashita, J.-I. Iwata, T. Otobe, and G. F. Bertsch, Phys. Rev. B 82, 155110 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.155110
188.
K. Yabana, T. Sugiyama, Y. Shinohara, T. Otobe, and G. F. Bertsch, Phys. Rev. B 85, 045134 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.045134
189.
S. A. Sato, K. Yabana, Y. Shinohara, T. Otobe, K.-M. Lee, and G. F. Bertsch, Phys. Rev. B 92, 205413 (2015).
http://dx.doi.org/10.1103/PhysRevB.92.205413
190.
K. Krieger, J. K. Dewhurst, P. Elliott, S. Sharma, and E. K. U. Gross, J. Chem. Theory Comput. 11, 4870 (2015).
http://dx.doi.org/10.1021/acs.jctc.5b00621
191.
C. A. Ullrich and A. D. Bandrauk, in Fundamentals of Time-Dependent Density Functional Theory, edited by M. A. Marques, N. T. Maitra, F. M. Nogueira, E. Gross, and A. Rubio (Springer Berlin Heidelberg, 2012), pp. 351371.
192.
S.-I. Chu, J. Chem. Phys. 123, 062207 (2005).
http://dx.doi.org/10.1063/1.1904587
193.
E. Penka Fowe and A. D. Bandrauk, Phys. Rev. A 84, 035402 (2011).
http://dx.doi.org/10.1103/PhysRevA.84.035402
194.
D. Dundas and J. Rost, Phys. Rev. A 71, 013421 (2005).
http://dx.doi.org/10.1103/PhysRevA.71.013421
195.
X. Chu and S.-I. Chu, Phys. Rev. A 64, 063404 (2001).
http://dx.doi.org/10.1103/PhysRevA.64.063404
196.
K. Nobusada and K. Yabana, Phys. Rev. A 70, 043411 (2004).
http://dx.doi.org/10.1103/PhysRevA.70.043411
197.
J. Haruyama, C. Hu, and K. Watanabe, Phys. Rev. A 85, 062511 (2012).
http://dx.doi.org/10.1103/PhysRevA.85.062511
198.
I. Bocharova, R. Karimi, E. F. Penka, J.-P. Brichta, P. Lassonde, X. Fu, J.-C. Kieffer, A. D. Bandrauk, I. Litvinyuk, J. Sanderson, and F. m. c. Légaré, Phys. Rev. Lett. 107, 063201 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.063201
199.
A. Russakoff, S. Bubin, X. Xie, S. Erattupuzha, M. Kitzler, and K. Varga, Phys. Rev. A 91, 023422 (2015).
http://dx.doi.org/10.1103/PhysRevA.91.023422
200.
T. Burnus, M. A. L. Marques, and E. K. U. Gross, Phys. Rev. A 71, 010501 (2005).
http://dx.doi.org/10.1103/PhysRevA.71.010501
201.
G. Wachter, S. Nagele, S. A. Sato, R. Pazourek, M. Wais, C. Lemell, X.-M. Tong, K. Yabana, and J. Burgdörfer, Phys. Rev. A 92, 061403 (2015).
http://dx.doi.org/10.1103/PhysRevA.92.061403
202.
P. Wopperer, P. Dinh, P.-G. Reinhard, and E. Suraud, Phys. Rep. 562, 1 (2015).
http://dx.doi.org/10.1016/j.physrep.2014.07.003
203.
A. Castro, J. Werschnik, and E. K. U. Gross, Phys. Rev. Lett. 109, 153603 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.153603
204.
K. Krieger, A. Castro, and E. Gross, Chem. Phys. 391, 50 (2011).
http://dx.doi.org/10.1016/j.chemphys.2011.04.014
205.
A. Castro, A. Rubio, and E. K. U. Gross, Eur. Phys. J. B 88, 1 (2015).
http://dx.doi.org/10.1140/epjb/e2015-50889-7
206.
P. Elliott, K. Krieger, J. Dewhurst, S. Sharma, and E. Gross, New J. Phys. 18, 013014 (2016).
http://dx.doi.org/10.1088/1367-2630/18/1/013014
207.
C. Verdozzi, Phys. Rev. Lett. 101, 166401 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.166401
208.
C. Verdozzi, D. Karlsson, M. P. von Friesen, C.-O. Almbladh, and U. von Barth, Chem. Phys. 391, 37 (2011).
http://dx.doi.org/10.1016/j.chemphys.2011.04.035
209.
M. Ruggenthaler and D. Bauer, Phys. Rev. Lett. 102, 233001 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.233001
210.
J. I. Fuks, P. Elliott, A. Rubio, and N. T. Maitra, J. Phys. Chem. Lett. 4, 735 (2013).
http://dx.doi.org/10.1021/jz302099f
211.
J. I. Fuks and N. T. Maitra, Phys. Chem. Chem. Phys. 16, 14504 (2014).
http://dx.doi.org/10.1039/C4CP00118D
212.
J. I. Fuks and N. T. Maitra, Phys. Rev. A 89, 062502 (2014).
http://dx.doi.org/10.1103/PhysRevA.89.062502
213.
P. Elliott and N. T. Maitra, Phys. Rev. A 85, 052510 (2012).
http://dx.doi.org/10.1103/PhysRevA.85.052510
214.
M. Thiele and S. Kümmel, Phys. Chem. Chem. Phys. 11, 4631 (2009).
http://dx.doi.org/10.1039/b902567g
215.
R. Requist and O. Pankratov, Phys. Rev. A 81, 042519 (2010).
http://dx.doi.org/10.1103/PhysRevA.81.042519
216.
L. Mancini, J. D. Ramsden, M. J. P. Hodgson, and R. W. Godby, Phys. Rev. B 89, 195114 (2014).
http://dx.doi.org/10.1103/PhysRevB.89.195114
217.
M. Lein and S. Kümmel, Phys. Rev. Lett. 94, 143003 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.143003
218.
M. J. P. Hodgson, J. D. Ramsden, J. B. J. Chapman, P. Lillystone, and R. W. Godby, Phys. Rev. B 88, 241102 (2013).
http://dx.doi.org/10.1103/PhysRevB.88.241102
219.
S. Raghunathan and M. Nest, J. Chem. Theory Comput. 7, 2492 (2011).
http://dx.doi.org/10.1021/ct200270t
220.
R. Ramakrishnan and M. Nest, Phys. Rev. A 85, 054501 (2012).
http://dx.doi.org/10.1103/PhysRevA.85.054501
221.
S. Raghunathan and M. Nest, J. Chem. Theory Comput. 8, 806 (2012).
http://dx.doi.org/10.1021/ct200905z
222.
F. Krausz and M. Ivanov, Rev. Mod. Phys. 81, 163 (2009).
http://dx.doi.org/10.1103/RevModPhys.81.163
223.
E. Perfetto and G. Stefanucci, Phys. Rev. A 91, 033416 (2015).
http://dx.doi.org/10.1103/PhysRevA.91.033416
224.
B. F. Habenicht, N. P. Tani, M. R. Provorse, and C. M. Isborn, J. Chem. Phys. 141, 184112 (2014).
http://dx.doi.org/10.1063/1.4900514
225.
M. J. T. Oliveira, B. Mignolet, T. Kus, T. A. Papadopoulos, F. Remacle, and M. J. Verstraete, J. Chem. Theory Comput. 11, 2221 (2015).
http://dx.doi.org/10.1021/acs.jctc.5b00167
226.
U. De Giovannini, G. Brunetto, A. Castro, J. Walkenhorst, and A. Rubio, ChemPhysChem 14, 1363 (2013).
http://dx.doi.org/10.1002/cphc.201201007
227.
N. Henkel, M. Keim, H. J. Lüdde, and T. Kirchner, Phys. Rev. A 80, 032704 (2009).
http://dx.doi.org/10.1103/PhysRevA.80.032704
228.
D. G. Lappas and R. van Leeuwen, J. Phys. B: At., Mol. Opt. Phys. 31, L249 (1998).
http://dx.doi.org/10.1088/0953-4075/31/6/001
229.
F. Wilken and D. Bauer, Phys. Rev. A 76, 023409 (2007).
http://dx.doi.org/10.1103/PhysRevA.76.023409
230.
C. A. Ullrich and E. K. U. Gross, Comments At. Mol. Phys. 33, 211 (1997).
231.
M. Petersilka and E. K. U. Gross, Laser Phys. Lawrence 9, 105 (1999).
232.
F. Wilken and D. Bauer, Phys. Rev. Lett. 97, 203001 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.203001
233.
A. K. Rajam, I. Raczkowska, and N. T. Maitra, Phys. Rev. Lett. 105, 113002 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.113002
234.
C. A. Rozzi, S. M. Falke, N. Spallanzani, A. Rubio, E. Molinari, D. Brida, M. Maiuri, G. Cerullo, H. Schramm, J. Christoffers et al., Nat. Commun. 4, 1602 (2013).
http://dx.doi.org/10.1038/ncomms2603
235.
S. M. Falke, C. A. Rozzi, D. Brida, M. Maiuri, M. Amato, E. Sommer, A. De Sio, A. Rubio, G. Cerullo, E. Molinari, and C. Lienau, Science 344, 1001 (2014).
http://dx.doi.org/10.1126/science.1249771
236.
E. Tapavicza, I. Tavernelli, and U. Rothlisberger, Phys. Rev. Lett. 98, 023001 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.023001
237.
B. F. Curchod, U. Rothlisberger, and I. Tavernelli, ChemPhysChem 14, 1314 (2013).
http://dx.doi.org/10.1002/cphc.201200941
238.
E. Tapavicza, G. D. Bellchambers, J. C. Vincent, and F. Furche, Phys. Chem. Chem. Phys. 15, 18336 (2013).
http://dx.doi.org/10.1039/c3cp51514a
239.
R. Mitric, U. Werner, and V. Bonacic-Koutecky, J. Chem. Phys. 129, 164118 (2008).
http://dx.doi.org/10.1063/1.3000012
240.
M. Barbatti and R. Crespo-Otero, in Density-Functional Methods for Excited States, edited by N. Ferré, M. Filatov, and M. Huix-Rotllant     (Springer International Publishing, Cham, 2016), pp. 415444.
241.
C. F. Craig, W. R. Duncan, and O. V. Prezhdo, Phys. Rev. Lett. 95, 163001 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.163001
242.
O. V. Prezhdo, W. R. Duncan, and V. V. Prezhdo, Prog. Surf. Sci. 84, 30 (2009).
http://dx.doi.org/10.1016/j.progsurf.2008.10.005
243.
J. C. Tully and R. Preston, J. Chem. Phys. 55, 562 (1971).
http://dx.doi.org/10.1063/1.1675788
244.
E. Tapavicza, A. M. Meyer, and F. Furche, Phys. Chem. Chem. Phys. 13, 20986 (2011).
http://dx.doi.org/10.1039/c1cp21292c
245.
B. F. E. Curchod, T. J. Penfold, U. Rothlisberger, and I. Tavernelli, ChemPhysChem 16, 2127 (2015).
http://dx.doi.org/10.1002/cphc.201500190
246.
I. Tavernelli, B. F. E. Curchod, and U. Rothlisberger, J. Chem. Phys. 131, 196101 (2009).
http://dx.doi.org/10.1063/1.3265858
247.
V. Chernyak and S. Mukamel, J. Chem. Phys. 112, 3572 (2000).
http://dx.doi.org/10.1063/1.480511
248.
R. Baer, Chem. Phys. Lett. 364, 75 (2002).
http://dx.doi.org/10.1016/S0009-2614(02)01214-9
249.
C. Hu, H. Hirai, and O. Sugino, J. Chem. Phys. 127, 064103 (2007).
http://dx.doi.org/10.1063/1.2755665
250.
R. Send and F. Furche, J. Chem. Phys. 132, 044107 (2010).
http://dx.doi.org/10.1063/1.3292571
251.
Z. Li and W. Liu, J. Chem. Phys. 141, 014110 (2014).
http://dx.doi.org/10.1063/1.4885817
252.
Z. Li, B. Suo, and W. Liu, J. Chem. Phys. 141, 244105 (2014).
http://dx.doi.org/10.1063/1.4903986
253.
X. Zhang and J. M. Herbert, J. Chem. Phys. 142, 064109 (2015).
http://dx.doi.org/10.1063/1.4907376
254.
Q. Ou, G. D. Bellchambers, F. Furche, and J. E. Subotnik, J. Chem. Phys. 142, 064114 (2015).
http://dx.doi.org/10.1063/1.4906941
255.
S. A. Fischer, C. J. Cramer, and N. Govind, J. Chem. Theory Comput. 11, 4294 (2015).
http://dx.doi.org/10.1021/acs.jctc.5b00473
256.
A. Krishtal, D. Ceresoli, and M. Pavanello, J. Chem. Phys. 142, 154116 (2015).
http://dx.doi.org/10.1063/1.4918276
257.
M. Pavanello, J. Chem. Phys. 138, 204118 (2013).
http://dx.doi.org/10.1063/1.4807059
258.
J. Neugebauer, J. Chem. Phys. 126, 134116 (2007).
http://dx.doi.org/10.1063/1.2713754
259.
M. E. Casida and T. A. Wesolowski, Int. J. Quantum Chem. 96, 577 (2004).
http://dx.doi.org/10.1002/qua.10744
260.
M. A. Mosquera, D. Jensen, and A. Wasserman, Phys. Rev. Lett. 111, 023001 (2013).
http://dx.doi.org/10.1103/PhysRevLett.111.023001
261.
I. V. Tokatly, Phys. Rev. Lett. 110, 233001 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.233001
262.
C. Pellegrini, J. Flick, I. V. Tokatly, H. Appel, and A. Rubio, Phys. Rev. Lett. 115, 093001 (2015).
http://dx.doi.org/10.1103/PhysRevLett.115.093001
263.
J. Flick, M. Ruggenthaler, H. Appel, and A. Rubio, Proc. Natl. Acad. Sci. U. S. A. 112, 15285 (2015).
http://dx.doi.org/10.1073/pnas.1518224112
264.
M. Ruggenthaler, J. Flick, C. Pellegrini, H. Appel, I. V. Tokatly, and A. Rubio, Phys. Rev. A 90, 012508 (2014).
http://dx.doi.org/10.1103/PhysRevA.90.012508
265.
O. Butriy, H. Ebadi, P. L. de Boeij, R. van Leeuwen, and E. K. U. Gross, Phys. Rev. A 76, 052514 (2007).
http://dx.doi.org/10.1103/PhysRevA.76.052514
266.
X. Zhang and J. M. Herbert, J. Chem. Phys. 141, 064104 (2014).
http://dx.doi.org/10.1063/1.4891984
267.
M. R. Provorse and C. M. Isborn, Int. J. Quant. Chem. 116, 739 (2016).
http://dx.doi.org/10.1002/qua.25096
http://aip.metastore.ingenta.com/content/aip/journal/jcp/144/22/10.1063/1.4953039
Loading
/content/aip/journal/jcp/144/22/10.1063/1.4953039
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/144/22/10.1063/1.4953039
2016-06-08
2016-10-01

Abstract

In the thirty-two years since the birth of the foundational theorems, time-dependent density functional theory has had a tremendous impact on calculations of electronic spectra and dynamics in chemistry, biology, solid-state physics, and materials science. Alongside the wide-ranging applications, there has been much progress in understanding fundamental aspects of the functionals and the theory itself. This Perspective looks back to some of these developments, reports on some recent progress and current challenges for functionals, and speculates on future directions to improve the accuracy of approximations used in this relatively young theory.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/144/22/1.4953039.html;jsessionid=C40MWQWoSUyugJagTatyFrOl.x-aip-live-06?itemId=/content/aip/journal/jcp/144/22/10.1063/1.4953039&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/144/22/10.1063/1.4953039&pageURL=http://scitation.aip.org/content/aip/journal/jcp/144/22/10.1063/1.4953039'
Right1,Right2,Right3,