Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/144/22/10.1063/1.4953250
1.
L. O. Brockway, Rev. Mod. Phys. 8, 231 (1936).
http://dx.doi.org/10.1103/RevModPhys.8.231
2.
J. Yang and M. Centurion, Struct. Chem. 26, 1513 (2015).
http://dx.doi.org/10.1007/s11224-015-0650-4
3.
D. Shorokhov and A. H. Zewail, Phys. Chem. Chem. Phys. 10, 2879 (2008).
http://dx.doi.org/10.1039/b801626g
4.
A. Boatwright, C. Feng, D. Spence, E. Latimer, C. Binns, A. M. Ellis, and S. Yang, Faraday Discuss. 162, 113 (2013).
http://dx.doi.org/10.1039/c2fd20136d
5.
J. P. Toennies and A. F. Vilesov, Angew. Chem., Int. Ed. 43, 2622 (2004).
http://dx.doi.org/10.1002/anie.200300611
6.
A. Volk, D. Knez, P. Thaler, A. W. Hauser, W. Grogger, F. Hofer, and W. E. Ernst, Phys. Chem. Chem. Phys. 17, 24570 (2015).
http://dx.doi.org/10.1039/C5CP04696C
7.
D. Spence, E. Latimer, W. York, A. Boatwright, C. Feng, S. Yang, and A. M. Ellis, Int. J. Mass Spectrom. 365-366, 86 (2014).
http://dx.doi.org/10.1016/j.ijms.2014.01.029
8.
L. F. Gomez, K. R. Ferguson, J. P. Cryan, C. Bacellar, R. M. P. Tanyag, C. Jones, S. Schorb, D. Anielski, A. Belkacem, C. Bernando, R. Boll, J. Bozek, S. Carron, G. Chen, T. Delmas, L. Englert, S. W. Epp, B. Erk, L. Foucar, R. Hartmann, A. Hexemer, M. Huth, J. Kwok, S. R. Leone, J. H. S. Ma, F. R. N. C. Maia, E. Malmerberg, S. Marchesini, D. M. Neumark, B. Poon, J. Prell, D. Rolles, B. Rudek, A. Rudenko, M. Seifrid, K. R. Siefermann, F. P. Sturm, M. Swiggers, J. Ullrich, F. Weise, P. Zwart, C. Bostedt, O. Gessner, and A. F. Vilesov, Science 345, 906 (2014).
http://dx.doi.org/10.1126/science.1252395
9.
L. F. Gomez, E. Loginov, and A. F. Vilesov, Phys. Rev. Lett. 108, 155302 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.155302
10.
P. Thaler, A. Volk, F. Lackner, J. Steurer, D. Knez, W. Grogger, F. Hofer, and W. E. Ernst, Phys. Rev. B 90, 155442 (2014).
http://dx.doi.org/10.1103/PhysRevB.90.155442
11.
J. Zhang, Y. He, W. M. Freund, and W. Kong, J. Phys. Chem. Lett. 5, 1801 (2014).
http://dx.doi.org/10.1021/jz5006829
12.
Y. He, J. Zhang, and W. Kong, “Electron diffraction of CBr4 in superfluid helium droplets: A step towards single molecule diffraction,” J. Chem. Phys. (submitted).
13.
Y. He, J. Zhang, and W. Kong, J. Chem. Phys. 144, 084302 (2016).
http://dx.doi.org/10.1063/1.4942473
14.
Y. He, J. Zhang, Y. Li, W. M. Freund, and W. Kong, Rev. Sci. Instrum. 86, 084102 (2015).
http://dx.doi.org/10.1063/1.4928107
15.
R. K. Bohn and A. Haaland, J. Organomet. Chem. 5, 470 (1966).
http://dx.doi.org/10.1016/S0022-328X(00)82382-7
16.
A. Jablonski, F. Salvat, and C. J. Powell, NIST Electron Elastic-Scattering Cross-Section, Database, Version 3.2, SRD 64 (National Institute of Standards and Technology, Gaithersburg, MD, 2010).
17.
M. Lewerenz, B. Schilling, and J. P. Toennies, J. Chem. Phys. 102, 8191 (1995).
http://dx.doi.org/10.1063/1.469231
18.
S. Coriani, A. Haaland, T. Helgaker, and P. Jorgensen, ChemPhysChem 7, 245 (2006).
http://dx.doi.org/10.1002/cphc.200500339
19.
S. Yang and A. M. Ellis, Rev. Sci. Instrum. 79, 016106 (2008).
http://dx.doi.org/10.1063/1.2824462
http://aip.metastore.ingenta.com/content/aip/journal/jcp/144/22/10.1063/1.4953250
Loading
/content/aip/journal/jcp/144/22/10.1063/1.4953250
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/144/22/10.1063/1.4953250
2016-06-08
2016-12-10

Abstract

We report electron diffraction of ferrocene doped in superfluid helium droplets. By taking advantage of the velocity slip in our pulsed droplet beam using a pulsed electron gun, and by doping with a high concentration of ferrocene delivered via a pulsed valve, we can obtain high quality diffraction images from singly doped droplets. Under the optimal doping conditions, 80% of the droplets sampled in the electron beam are doped with just one ferrocene molecule. Extension of this size selection method to dopant clusters has also been demonstrated. However, incomplete separation of dopant clusters might require deconvolution and modeling of the doping process. This method can be used for studies of nucleation processes in superfluid helium droplets.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/144/22/1.4953250.html;jsessionid=3Gb-lspMdqw91C1KEi1zLLbj.x-aip-live-03?itemId=/content/aip/journal/jcp/144/22/10.1063/1.4953250&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/144/22/10.1063/1.4953250&pageURL=http://scitation.aip.org/content/aip/journal/jcp/144/22/10.1063/1.4953250'
Right1,Right2,Right3,