Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/144/23/10.1063/1.4952650
1.
P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
http://dx.doi.org/10.1103/PhysRev.136.B864
2.
W. Kohn and L. J. Sham, Phys. Rev. B 140, A1133 (1965).
http://dx.doi.org/10.1103/PhysRev.140.A1133
3.
R. G. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules (Oxford University Press, Oxford, 1989).
4.
R. Dreizler and K. Gross, Density-Functional Theory (Springer Verlag, Berlin Heidelberg, 1990).
5.
S. Goedecker, Rev. Mod. Phys. 71, 1085 (1999).
http://dx.doi.org/10.1103/RevModPhys.71.1085
6.
D. R. Bowler and T. Miyazaki, Rep. Prog. Phys. 75, 036503 (2012).
http://dx.doi.org/10.1088/0034-4885/75/3/036503
7.
D. R. Bowler and T. Miyazaki, J. Phys.: Condens. Matter 22, 074207 (2010).
http://dx.doi.org/10.1088/0953-8984/22/7/074207
8.
J. VandeVondele, U. Borstnik, and J. Hutter, J. Chem. Theory Comput. 8, 3565 (2012).
http://dx.doi.org/10.1021/ct200897x
9.
D. Marx and J. Hutter, in Modern Methods and Algorithms of Quantum Chemistry, 2nd ed., edited by J. Grotendorst (John von Neumann Institute for Computing, Jülich, Germany, 2000).
10.
G. Chartrand, Introductory Graph Theory (Dover Publications, New York, 1985).
11.
J. A. Bondy, Graph Theory (Springer-Verlag, London, 2008).
12.
W. Yang, Phys. Rev. Lett. 66, 1438 (1991).
http://dx.doi.org/10.1103/PhysRevLett.66.1438
13.
P. D. Walker and P. G. Mezey, J. Am. Chem. Soc. 115, 12423 (1993).
http://dx.doi.org/10.1021/ja00079a025
14.
W. T. Yang and T. S. Lee, J. Chem. Phys. 103, 5674 (1995).
http://dx.doi.org/10.1063/1.470549
15.
I. A. Abrikosov, A. M. N. Niklasson, S. I. Simak, B. Johansson, A. V. Ruban, and H. L. Skriver, Phys. Rev. Lett. 76, 4203 (1996).
http://dx.doi.org/10.1103/PhysRevLett.76.4203
16.
K. Kitaura, E. Ikeo, T. Nakano, and M. Uebayasi, Chem. Phys. Lett. 313, 701 (1999).
http://dx.doi.org/10.1016/S0009-2614(99)00874-X
17.
T. Ozaki, Phys. Rev. B 74, 245101 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.245101
18.
F. G. Gustavson, ACM Trans. Math. Software 4, 250 (1978).
http://dx.doi.org/10.1145/355791.355796
19.
S. Pissanetzky, Sparse Matrix Technology (Academic Press, London, 1984).
20.
W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipies in FORTRAN (Cambridge University Press, Port Chester, NY, 1992).
21.
Y. Saad, Iterative Methods for Sparse Linear Systems (PWS Publishing, Boston, 1996).
22.
M. Challacombe, Comput. Phys. Commun. 128, 93 (2000).
http://dx.doi.org/10.1016/S0010-4655(00)00074-6
23.
E. H. Rubensson, E. Rudberg, and P. Salek, J. Comput. Chem. 28, 2531 (2007).
http://dx.doi.org/10.1002/jcc.20691
24.
E. H. Rubensson, E. Rudberg, and P. Salek, J. Chem. Phys. 128, 74109 (2008).
http://dx.doi.org/10.1063/1.2840354
25.
A. Buluc and J. R. Gilbert, SIAM J. Sci. Comput. 34, 170 (2012).
http://dx.doi.org/10.1137/110848244
26.
U. Borstnik, J. VandeVondele, V. Weber, and J. Hutter, Parallel Comput. 40, 47 (2014).
http://dx.doi.org/10.1016/j.parco.2014.03.012
27.
N. Bock, M. Challacombe, and L. V. Kale, SIAM J. Sci. Comput. 38, C1C21 (2016).
http://dx.doi.org/10.1137/140974602
28.
V. Weber, T. Latino, A. Pozdeev, I. Feduova, and A. Curioni, J. Chem. Theory Comput. 11, 3145 (2015).
http://dx.doi.org/10.1021/acs.jctc.5b00382
29.
S. M. Mniszewski, M. J. Cawkwell, M. E. Wall, J. Mohd-Yusof, N. Bock, T. C. Germann, and A. M. N. Niklasson, J. Chem. Theory Comput. 11, 4644 (2015).
http://dx.doi.org/10.1021/acs.jctc.5b00552
30.
Intel MKL, Intel Math Kernel Library, 2015, https://software.intel.com/en-us/intel-mkl.
31.
32.
R. McWeeny, Proc. R. Soc. London, Ser. A 235, 496 (1956).
http://dx.doi.org/10.1098/rspa.1956.0100
33.
A. H. R. Palser and D. E. Manolopoulos, Phys. Rev. B 58, 12704 (1998).
http://dx.doi.org/10.1103/PhysRevB.58.12704
34.
A. Holas, Chem. Phys. Lett. 340, 552 (2001).
http://dx.doi.org/10.1016/S0009-2614(01)00409-2
35.
A. M. N. Niklasson, Phys. Rev. B 66, 155115 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.155115
36.
A. M. N. Niklasson, Phys. Rev. B 68, 233104 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.233104
37.
W. Z. Liang, C. Saravanan, Y. Shao, R. Baer, A. T. Bell, and M. Head-Gordon, J. Chem. Phys. 119, 4117 (2003).
http://dx.doi.org/10.1063/1.1590632
38.
E. Rudberg and E. H. Rubensson, J. Phys.: Condens. Matter 23, 075502 (2011).
http://dx.doi.org/10.1088/0953-8984/23/7/075502
39.
E. H. Rubensson, J. Chem. Theory Comput. 7, 1233 (2011).
http://dx.doi.org/10.1021/ct2001705
40.
P. Suryanarayana, Chem. Phys. Lett. 555, 291 (2013).
http://dx.doi.org/10.1016/j.cplett.2012.10.090
41.
E. H. Rubensson and A. M. N. Niklasson, SIAM J. Sci. Comput. 36, 148 (2014).
http://dx.doi.org/10.1137/130911585
42.
P. Pulay and G. Fogarasi, Chem. Phys. Lett. 386, 272 (2004).
http://dx.doi.org/10.1016/j.cplett.2004.01.069
43.
J. Herbert and M. Head-Gordon, Phys. Chem. Chem. Phys. 7, 3269 (2005).
http://dx.doi.org/10.1039/b509494a
44.
A. M. N. Niklasson, C. J. Tymczak, and M. Challacombe, Phys. Rev. Lett. 97, 123001 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.123001
45.
T. D. Kühne, M. Krack, F. R. Mohamed, and M. Parrinello, Phys. Rev. Lett. 98, 066401 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.066401
46.
G. Zheng, A. M. N. Niklasson, and M. Karplus, J. Chem. Phys. 135, 044122 (2011).
http://dx.doi.org/10.1063/1.3605303
47.
J. Hutter, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2, 604 (2012).
http://dx.doi.org/10.1002/wcms.90
48.
L. Lin, J. Lu, and S. Shao, Entropy 16, 110 (2014).
http://dx.doi.org/10.3390/e16010110
49.
M. Arita, D. R. Bowler, and T. Miyazaki, J. Chem. Theory Comput. 10, 5419 (2014).
http://dx.doi.org/10.1021/ct500847y
50.
A. M. N. Niklasson and M. Cawkwell, J. Chem. Phys. 141, 164123 (2014).
http://dx.doi.org/10.1063/1.4898803
51.
S. Goedecker and L. Colombo, Phys. Rev. Lett. 73, 122 (1994).
http://dx.doi.org/10.1103/PhysRevLett.73.122
52.
R. N. Silver and H. Roder, Int. J. Mod. Phys. C 5, 735 (1994).
http://dx.doi.org/10.1142/S0129183194000842
53.
A. M. N. Niklasson and M. Challacombe, Phys. Rev. Lett. 92, 193001 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.193001
54.
V. Weber, A. M. N. Niklasson, and M. Challacombe, Phys. Rev. Lett. 92, 193002 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.193002
55.
M. Elstner, D. Poresag, G. Jungnickel, J. Elsner, M. Haugk, T. Frauenheim, S. Suhai, and G. Seifert, Phys. Rev. B 58, 7260 (1998).
http://dx.doi.org/10.1103/PhysRevB.58.7260
56.
M. W. Finnis, A. T. Paxton, M. Methfessel, and M. van Schilfgarde, Phys. Rev. Lett. 81, 5149 (1998).
http://dx.doi.org/10.1103/PhysRevLett.81.5149
57.
T. Frauenheim, G. Seifert, M. E. Z. Hajnal, G. Jungnickel, D. Poresag, S. Suhai, and R. Scholz, Phys. Status Solidi 217, 41 (2000).
http://dx.doi.org/10.1002/(SICI)1521-3951(200001)217:1<41::AID-PSSB41>3.0.CO;2-V
58.
M. J. Cawkwell and A. M. N. Niklasson, J. Chem. Phys. 137, 134105 (2012).
http://dx.doi.org/10.1063/1.4755991
59.
G. Karypis and V. Kumar, SIAM J. Sci. Comput. 20, 359 (1999).
http://dx.doi.org/10.1137/S1064827595287997
60.
61.
H. N. Djidjev, G. Hahn, S. M. N. Mniszewski, C. F. A. Negre, A. M. N. Niklasson, and V. B. Sardeshmukh, “Graph partitioning methods for fast parallel quantum molecular dynamics,” e-print arXiv:1605.01118 [quant-ph] (2016).
62.
W. Kohn, Phys. Rev. Lett. 76, 3168 (1996).
http://dx.doi.org/10.1103/PhysRevLett.76.3168
63.
W. Kohn, Phys. Rev. A 133, A171 (1964).
http://dx.doi.org/10.1103/PhysRev.133.A171
64.
N. F. Mott, Philos. Mag. 6, 278 (1961).
http://dx.doi.org/10.1080/14786436108243318
65.
T. S. Lee, D. M. York, and W. Yang, J. Chem. Phys. 105, 2744 (1996).
http://dx.doi.org/10.1063/1.472136
66.
D. M. York, T. S. Lee, and W. Yang, Phys. Rev. Lett. 80, 5011 (1998).
http://dx.doi.org/10.1103/PhysRevLett.80.5011
67.
A. M. N. Niklasson, Phys. Rev. Lett. 100, 123004 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.123004
68.
P. Steneteg, I. A. Abrikosov, V. Weber, and A. M. N. Niklasson, Phys. Rev. B 82, 075110 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.075110
69.
P. Souvatzis and A. M. N. Niklasson, J. Chem. Phys. 140, 044117 (2014).
http://dx.doi.org/10.1063/1.4862907
70.
B. Aradi, A. M. N. Niklasson, and T. Frauenheim, J. Chem. Theory Comput. 11, 3357 (2015).
http://dx.doi.org/10.1021/acs.jctc.5b00324
71.
F. Shimojo, R. K. Kalia, A. Nakano, and P. Vashista, Phys. Rev. B 77, 085103 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.085103
72.
E. Tsuchida, J. Phys.: Condens. Matter 20, 294212 (2008).
http://dx.doi.org/10.1088/0953-8984/20/29/294212
73.
F. Shimojo, S. Hattori, R. K. Kalia, M. Kusaneth, W. W. Mou, A. Nakano, K. Nomura, S. Ohmura, P. Rajak, K. Shimamura, and P. Vashista, J. Chem. Phys. 140, 18529 (2014).
http://dx.doi.org/10.1063/1.4869342
74.
M. Kobayashi, T. Kunisada, T. Akama, D. Sakura, and H. Nakai, J. Chem. Phys. 134, 034105 (2011).
http://dx.doi.org/10.1063/1.3524337
75.
D. K. Remler and P. A. Madden, Mol. Phys. 70, 921 (1990).
http://dx.doi.org/10.1080/00268979000101451
76.
See supplementary material at http://dx.doi.org/10.1063/1.4952650 for pseudo code that demonstrates the exact relation between a globally thresholded sparse matrix algebra and a graph partitioning approach.[Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/jcp/144/23/10.1063/1.4952650
Loading
/content/aip/journal/jcp/144/23/10.1063/1.4952650
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/144/23/10.1063/1.4952650
2016-06-15
2016-12-08

Abstract

We show how graph theory can be combined with quantum theory to calculate the electronic structure of large complex systems. The graph formalism is general and applicable to a broad range of electronic structure methods and materials, including challenging systems such as biomolecules. The methodology combines well-controlled accuracy, low computational cost, and natural low-communication parallelism. This combination addresses substantial shortcomings of linear scaling electronic structure theory, in particular with respect to quantum-based molecular dynamics simulations.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/144/23/1.4952650.html;jsessionid=xY0vznL9iS-ARsLLRWHOAkvi.x-aip-live-03?itemId=/content/aip/journal/jcp/144/23/10.1063/1.4952650&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/144/23/10.1063/1.4952650&pageURL=http://scitation.aip.org/content/aip/journal/jcp/144/23/10.1063/1.4952650'
Right1,Right2,Right3,