Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/144/23/10.1063/1.4953685
1.
D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. H. B. Dommett, G. Evmenenko, S. T. Nguyen, and R. S. Ruoff, “Preparation and characterization of graphene oxide paper,” Nature 448, 457460 (2007).
http://dx.doi.org/10.1038/nature06016
2.
K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490, 192200 (2012).
http://dx.doi.org/10.1038/nature11458
3.
R. K. Joshi, S. Alwarappan, M. Yoshimura, V. Sahajwalla, and Y. Nishina, “Graphene oxide: The new membrane material,” Appl. Mater. Today 1, 112 (2015).
http://dx.doi.org/10.1016/j.apmt.2015.06.002
4.
H. W. Yoon, Y. H. Cho, and H. B. Park, “Graphene-based membranes: Status and prospects,” Philos. Trans. R. Soc., A 374, 20150024 (2016).
http://dx.doi.org/10.1098/rsta.2015.0024
5.
X. Yang, C. Cheng, Y. Wang, L. Qiu, and D. Li, “Liquid-mediated dense integration of graphene materials for compact capacitive energy storage,” Science 341, 534537 (2013).
http://dx.doi.org/10.1126/science.1239089
6.
L. Qiu, X. Zhang, W. Yang, Y. Wang, G. P. Simon, and D. Li, “Controllable corrugation of chemically converted graphene sheets in water and potential application for nanofiltration,” Chem. Commun. 47, 58105812 (2011).
http://dx.doi.org/10.1039/c1cc10720h
7.
R. R. Nair, H. A. Wu, P. N. Jayaram, I. V. Grigorieva, and A. K. Geim, “Unimpeded permeation of water through helium-leak–tight graphene-based membranes,” Science 335, 442444 (2012).
http://dx.doi.org/10.1126/science.1211694
8.
P. Sun, M. Zhu, K. Wang, M. Zhong, J. Wei, D. Wu, Z. Xu, and H. Zhu, “Selective ion penetration of graphene oxide membranes,” ACS Nano 7, 428437 (2013).
http://dx.doi.org/10.1021/nn304471w
9.
C. Cheng and D. Li, “Solvated graphenes: An emerging class of functional soft materials,” Adv. Mater. 25, 1330 (2013).
http://dx.doi.org/10.1002/adma.201203567
10.
H. Huang, Z. Song, N. Wei, L. Shi, Y. Mao, Y. Ying, L. Sun, Z. Xu, and X. Peng, “Ultrafast viscous water flow through nanostrand-channelled graphene oxide membranes,” Nat. Commun. 4, 2979 (2013).
http://dx.doi.org/10.1038/ncomms3979
11.
H. Huang, Y. Ying, and X. Peng, “Graphene oxide nanosheet: An emerging star material for novel separation membranes,” J. Mater. Chem. A 2, 1377213782 (2014).
http://dx.doi.org/10.1039/C4TA02359E
12.
H. G. Park and Y. Jung, “Carbon nanofluidics of rapid water transport for energy applications,” Chem. Soc. Rev. 43, 565576 (2014).
http://dx.doi.org/10.1039/C3CS60253B
13.
A. Aghigh, V. Alizadeh, H. Y. Wong, M. S. Islam, N. Amin, and M. Zaman, “Recent advances in utilization of graphene for filtration and desalination of water: A review,” Desalination 365, 389397 (2015).
http://dx.doi.org/10.1016/j.desal.2015.03.024
14.
H. M. Hegab and L. Zou, “Graphene oxide-assisted membranes: Fabrication and potential applications in desalination and water purification,” J. Membr. Sci. 484, 95106 (2015).
http://dx.doi.org/10.1016/j.memsci.2015.03.011
15.
C. Cheng, G. Jiang, C. J. Garvey, Y. Wang, G. P. Simon, J. Z. Liu, and D. Li, “Ion transport in complex layered graphene-based membranes with tuneable interlayer spacing,” Sci. Adv. 2, e1501272 (2016).
http://dx.doi.org/10.1126/sciadv.1501272
16.
R. Cruz-Silva, M. Endo, and M. Terrones, “Graphene oxide films, fibers, and membranes,” Nanotechnol. Rev. (published online, 2016).
http://dx.doi.org/10.1515/ntrev-2015-0041
17.
A. R. Koltonow and J. Huang, “Two-dimensional nanofluidics,” Science 351, 13951396 (2016).
http://dx.doi.org/10.1126/science.aaf5289
18.
D. W. Boukhvalov, M. I. Katsnelson, and Y.-W. Son, “Origin of anomalous water permeation through graphene oxide membrane,” Nano Lett. 13, 39303935 (2013).
http://dx.doi.org/10.1021/nl4020292
19.
N. Wei, X. Peng, and Z. Xu, “Breakdown of fast water transport in graphene oxides,” Phys. Rev. E 89, 012113 (2014).
http://dx.doi.org/10.1103/PhysRevE.89.012113
20.
S. Ban, J. Xie, Y. Wang, B. Jing, B. Liu, and H. Zhou, “Insight into the nanoscale mechanism of rapid H2O transport within graphene oxide membrane: The impact of oxygen functional group clustering,” ACS Appl. Mater. Interfaces 8, 321332 (2016).
http://dx.doi.org/10.1021/acsami.5b08824
21.
S. Xia, M. Ni, T. Zhu, Y. Zhao, and N. Li, “Ultrathin graphene oxide nanosheet membranes with various d-spacing assembled using the pressure-assisted filtration method for removing natural organic matter,” Desalination 371, 7887 (2015).
http://dx.doi.org/10.1016/j.desal.2015.06.005
22.
M. Hu and B. Mi, “Enabling graphene oxide nanosheets as water separation membranes,” Environ. Sci. Technol. 47, 37153723 (2013).
http://dx.doi.org/10.1021/es400571g
23.
A. Akbari, P. Sheath, S. T. Martin, D. B. Shinde, M. Shaibani, P. C. Banerjee, R. Tkacz, D. Bhattacharyya, and M. Majumder, “Large-area graphene-based nanofiltration membranes by shear alignment of discotic nematic liquid crystals of graphene oxide,” Nat. Commun. 7, 10891 (2016).
http://dx.doi.org/10.1038/ncomms10891
24.
R. K. Joshi, P. Carbone, F. C. Wang, V. G. Kravets, Y. Su, I. V. Grigorieva, H. A. Wu, A. K. Geim, and R. R. Nair, “Precise and ultrafast molecular sieving through graphene oxide membranes,” Science 343, 752754 (2014).
http://dx.doi.org/10.1126/science.1245711
25.
W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L. Klein, “Comparison of simple potential functions for simulating liquid water,” J. Chem. Phys. 79, 926935 (1983).
http://dx.doi.org/10.1063/1.445869
26.
M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Oxford University Press, Oxford, 1989).
27.
J.-P. Hansen and I. R. McDonald, Theory of Simple Liquids, 3rd ed. (Academic Press, 2006).
28.
W. D. Cornell, P. Cieplak, C. I. Bayly, I. R. Gould, K. M. Merz, D. M. Ferguson, D. C. Spellmeyer, T. Fox, J. W. Caldwell, and P. A. Kollman, “A second generation force field for the simulation of proteins, nucleic acids, and organic molecules,” J. Am. Chem. Soc. 117, 51795197 (1995).
http://dx.doi.org/10.1021/ja00124a002
29.
T. Werder, J. H. Walther, R. L. Jaffe, T. Halicioglu, and P. Koumoutsakos, “On the water-carbon interaction for use in molecular dynamics simulations of graphite and carbon nanotubes,” J. Phys. Chem. B 107, 13451352 (2003).
http://dx.doi.org/10.1021/jp0268112
30.
See http://lammps.sandia.gov for the code.
31.
J.-P. Ryckaert, G. Ciccotti, and H. J. C. Berendsen, “Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes,” J. Comput. Phys. 23, 327341 (1977).
http://dx.doi.org/10.1016/0021-9991(77)90098-5
32.
I.-C. Yeh and M. L. Berkowitz, “Ewald summation for systems with slab geometry,” J. Chem. Phys. 111, 31553162 (1999).
http://dx.doi.org/10.1063/1.479595
33.
H. Hasimoto, “On the flow of a viscous fluid past a thin screen at small Reynolds numbers,” J. Phys. Soc. Jpn. 13, 633639 (1958).
http://dx.doi.org/10.1143/JPSJ.13.633
34.
R. A. Sampson, “On Stokes’s current function,” Philos. Trans. R. Soc., A 182, 449518 (1891).
http://dx.doi.org/10.1098/rsta.1891.0012
35.
S. Chen and G. D. Doolen, “Lattice Boltzmann method for fluid flows,” Annu. Rev. Fluid Mech. 30, 329364 (1998).
http://dx.doi.org/10.1146/annurev.fluid.30.1.329
36.
S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond (Oxford University Press, New York, 2001).
37.
H. Yoshida and H. Hayashi, “Transmission–reflection coefficient in the lattice Boltzmann method,” J. Stat. Phys. 155, 277299 (2014).
http://dx.doi.org/10.1007/s10955-014-0953-7
38.
Q. Zou and X. He, “On pressure and velocity boundary conditions for the lattice Boltzmann BGK model,” Phys. Fluids 9, 15911598 (1997).
http://dx.doi.org/10.1063/1.869307
39.
M. A. González and J. L. F. Abascal, “The shear viscosity of rigid water models,” J. Chem. Phys. 132, 096101 (2010).
http://dx.doi.org/10.1063/1.3330544
40.
S. Gravelle, L. Joly, C. Ybert, and L. Bocquet, “Large permeabilities of hourglass nanopores: From hydrodynamics to single file transport,” J. Chem. Phys. 141, 18C526 (2014).
http://dx.doi.org/10.1063/1.4897253
41.
K. Falk, F. Sedlmeier, L. Joly, R. R. Netz, and L. Bocquet, “Ultralow liquid/solid friction in carbon nanotubes: Comprehensive theory for alcohols, alkanes, OMCTS, and water,” Langmuir 28, 1426114272 (2012).
http://dx.doi.org/10.1021/la3029403
42.
L. Bocquet and J.-L. Barrat, “Hydrodynamic boundary conditions, correlation functions, and Kubo relations for confined fluids,” Phys. Rev. E 49, 30793092 (1994).
http://dx.doi.org/10.1103/PhysRevE.49.3079
43.
L. Bocquet and J. -L. Barrat, “Flow boundary conditions from nano-to micro-scales,” Soft Matter 3, 685693 (2007).
http://dx.doi.org/10.1039/b616490k
44.
J. A. Thomas and A. J. H. McGaughey, “Reassessing fast water transport through carbon nanotubes,” Nano Lett. 8, 27882793 (2008).
http://dx.doi.org/10.1021/nl8013617
45.
S. K. Kannam, B. D. Todd, J. S. Hansen, and P. J. Daivis, “Slip length of water on graphene: Limitations of non-equilibrium molecular dynamics simulations,” J. Chem. Phys. 136, 024705 (2012).
http://dx.doi.org/10.1063/1.3675904
46.
J. Muscatello, F. Jaeger, O. K. Matar, and E. A. Müller, “Optimising water transport through graphene-based membranes: Insights from non-equilibrium molecular dynamics,” ACS Appl. Mater. Interfaces 8, 1233012336 (2016).
http://dx.doi.org/10.1021/acsami.5b12112
47.
S. Gravelle, C. Ybert, L. Bocquet, and L. Joly, “Anomalous capillary filling and wettability reversal in nanochannels,” Phys. Rev. E 93, 033123 (2016).
http://dx.doi.org/10.1103/PhysRevE.93.033123
http://aip.metastore.ingenta.com/content/aip/journal/jcp/144/23/10.1063/1.4953685
Loading
/content/aip/journal/jcp/144/23/10.1063/1.4953685
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/144/23/10.1063/1.4953685
2016-06-15
2016-12-06

Abstract

In this paper, we investigate the hydrodynamic permeance of water through graphene-based membranes, inspired by recent experimental findings on graphene-oxide membranes. We consider the flow across multiple graphene layers having nanoslits in a staggered alignment, with an inter-layer distance ranging from sub-nanometer to a few nanometers. We compare results for the permeability obtained by means of molecular dynamics simulations to continuum predictions obtained by using the lattice Boltzmann calculations and hydrodynamic modelization. This highlights that, in spite of extreme confinement, the permeability across the graphene-based membrane is quantitatively predicted on the basis of a continuum expression, taking properly into account entrance and slippage effects of the confined water flow. Our predictions refute the breakdown of hydrodynamics at small scales in these membrane systems. They constitute a benchmark to which we compare published experimental data.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/144/23/1.4953685.html;jsessionid=CqeOB2E778Fth6IE8nPvDLWt.x-aip-live-03?itemId=/content/aip/journal/jcp/144/23/10.1063/1.4953685&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/144/23/10.1063/1.4953685&pageURL=http://scitation.aip.org/content/aip/journal/jcp/144/23/10.1063/1.4953685'
Right1,Right2,Right3,