Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. H. B. Dommett, G. Evmenenko, S. T. Nguyen, and R. S. Ruoff, “Preparation and characterization of graphene oxide paper,” Nature 448, 457460 (2007).
K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490, 192200 (2012).
R. K. Joshi, S. Alwarappan, M. Yoshimura, V. Sahajwalla, and Y. Nishina, “Graphene oxide: The new membrane material,” Appl. Mater. Today 1, 112 (2015).
H. W. Yoon, Y. H. Cho, and H. B. Park, “Graphene-based membranes: Status and prospects,” Philos. Trans. R. Soc., A 374, 20150024 (2016).
X. Yang, C. Cheng, Y. Wang, L. Qiu, and D. Li, “Liquid-mediated dense integration of graphene materials for compact capacitive energy storage,” Science 341, 534537 (2013).
L. Qiu, X. Zhang, W. Yang, Y. Wang, G. P. Simon, and D. Li, “Controllable corrugation of chemically converted graphene sheets in water and potential application for nanofiltration,” Chem. Commun. 47, 58105812 (2011).
R. R. Nair, H. A. Wu, P. N. Jayaram, I. V. Grigorieva, and A. K. Geim, “Unimpeded permeation of water through helium-leak–tight graphene-based membranes,” Science 335, 442444 (2012).
P. Sun, M. Zhu, K. Wang, M. Zhong, J. Wei, D. Wu, Z. Xu, and H. Zhu, “Selective ion penetration of graphene oxide membranes,” ACS Nano 7, 428437 (2013).
C. Cheng and D. Li, “Solvated graphenes: An emerging class of functional soft materials,” Adv. Mater. 25, 1330 (2013).
H. Huang, Z. Song, N. Wei, L. Shi, Y. Mao, Y. Ying, L. Sun, Z. Xu, and X. Peng, “Ultrafast viscous water flow through nanostrand-channelled graphene oxide membranes,” Nat. Commun. 4, 2979 (2013).
H. Huang, Y. Ying, and X. Peng, “Graphene oxide nanosheet: An emerging star material for novel separation membranes,” J. Mater. Chem. A 2, 1377213782 (2014).
H. G. Park and Y. Jung, “Carbon nanofluidics of rapid water transport for energy applications,” Chem. Soc. Rev. 43, 565576 (2014).
A. Aghigh, V. Alizadeh, H. Y. Wong, M. S. Islam, N. Amin, and M. Zaman, “Recent advances in utilization of graphene for filtration and desalination of water: A review,” Desalination 365, 389397 (2015).
H. M. Hegab and L. Zou, “Graphene oxide-assisted membranes: Fabrication and potential applications in desalination and water purification,” J. Membr. Sci. 484, 95106 (2015).
C. Cheng, G. Jiang, C. J. Garvey, Y. Wang, G. P. Simon, J. Z. Liu, and D. Li, “Ion transport in complex layered graphene-based membranes with tuneable interlayer spacing,” Sci. Adv. 2, e1501272 (2016).
R. Cruz-Silva, M. Endo, and M. Terrones, “Graphene oxide films, fibers, and membranes,” Nanotechnol. Rev. (published online, 2016).
A. R. Koltonow and J. Huang, “Two-dimensional nanofluidics,” Science 351, 13951396 (2016).
D. W. Boukhvalov, M. I. Katsnelson, and Y.-W. Son, “Origin of anomalous water permeation through graphene oxide membrane,” Nano Lett. 13, 39303935 (2013).
N. Wei, X. Peng, and Z. Xu, “Breakdown of fast water transport in graphene oxides,” Phys. Rev. E 89, 012113 (2014).
S. Ban, J. Xie, Y. Wang, B. Jing, B. Liu, and H. Zhou, “Insight into the nanoscale mechanism of rapid H2O transport within graphene oxide membrane: The impact of oxygen functional group clustering,” ACS Appl. Mater. Interfaces 8, 321332 (2016).
S. Xia, M. Ni, T. Zhu, Y. Zhao, and N. Li, “Ultrathin graphene oxide nanosheet membranes with various d-spacing assembled using the pressure-assisted filtration method for removing natural organic matter,” Desalination 371, 7887 (2015).
M. Hu and B. Mi, “Enabling graphene oxide nanosheets as water separation membranes,” Environ. Sci. Technol. 47, 37153723 (2013).
A. Akbari, P. Sheath, S. T. Martin, D. B. Shinde, M. Shaibani, P. C. Banerjee, R. Tkacz, D. Bhattacharyya, and M. Majumder, “Large-area graphene-based nanofiltration membranes by shear alignment of discotic nematic liquid crystals of graphene oxide,” Nat. Commun. 7, 10891 (2016).
R. K. Joshi, P. Carbone, F. C. Wang, V. G. Kravets, Y. Su, I. V. Grigorieva, H. A. Wu, A. K. Geim, and R. R. Nair, “Precise and ultrafast molecular sieving through graphene oxide membranes,” Science 343, 752754 (2014).
W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L. Klein, “Comparison of simple potential functions for simulating liquid water,” J. Chem. Phys. 79, 926935 (1983).
M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Oxford University Press, Oxford, 1989).
J.-P. Hansen and I. R. McDonald, Theory of Simple Liquids, 3rd ed. (Academic Press, 2006).
W. D. Cornell, P. Cieplak, C. I. Bayly, I. R. Gould, K. M. Merz, D. M. Ferguson, D. C. Spellmeyer, T. Fox, J. W. Caldwell, and P. A. Kollman, “A second generation force field for the simulation of proteins, nucleic acids, and organic molecules,” J. Am. Chem. Soc. 117, 51795197 (1995).
T. Werder, J. H. Walther, R. L. Jaffe, T. Halicioglu, and P. Koumoutsakos, “On the water-carbon interaction for use in molecular dynamics simulations of graphite and carbon nanotubes,” J. Phys. Chem. B 107, 13451352 (2003).
See for the code.
J.-P. Ryckaert, G. Ciccotti, and H. J. C. Berendsen, “Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes,” J. Comput. Phys. 23, 327341 (1977).
I.-C. Yeh and M. L. Berkowitz, “Ewald summation for systems with slab geometry,” J. Chem. Phys. 111, 31553162 (1999).
H. Hasimoto, “On the flow of a viscous fluid past a thin screen at small Reynolds numbers,” J. Phys. Soc. Jpn. 13, 633639 (1958).
R. A. Sampson, “On Stokes’s current function,” Philos. Trans. R. Soc., A 182, 449518 (1891).
S. Chen and G. D. Doolen, “Lattice Boltzmann method for fluid flows,” Annu. Rev. Fluid Mech. 30, 329364 (1998).
S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond (Oxford University Press, New York, 2001).
H. Yoshida and H. Hayashi, “Transmission–reflection coefficient in the lattice Boltzmann method,” J. Stat. Phys. 155, 277299 (2014).
Q. Zou and X. He, “On pressure and velocity boundary conditions for the lattice Boltzmann BGK model,” Phys. Fluids 9, 15911598 (1997).
M. A. González and J. L. F. Abascal, “The shear viscosity of rigid water models,” J. Chem. Phys. 132, 096101 (2010).
S. Gravelle, L. Joly, C. Ybert, and L. Bocquet, “Large permeabilities of hourglass nanopores: From hydrodynamics to single file transport,” J. Chem. Phys. 141, 18C526 (2014).
K. Falk, F. Sedlmeier, L. Joly, R. R. Netz, and L. Bocquet, “Ultralow liquid/solid friction in carbon nanotubes: Comprehensive theory for alcohols, alkanes, OMCTS, and water,” Langmuir 28, 1426114272 (2012).
L. Bocquet and J.-L. Barrat, “Hydrodynamic boundary conditions, correlation functions, and Kubo relations for confined fluids,” Phys. Rev. E 49, 30793092 (1994).
L. Bocquet and J. -L. Barrat, “Flow boundary conditions from nano-to micro-scales,” Soft Matter 3, 685693 (2007).
J. A. Thomas and A. J. H. McGaughey, “Reassessing fast water transport through carbon nanotubes,” Nano Lett. 8, 27882793 (2008).
S. K. Kannam, B. D. Todd, J. S. Hansen, and P. J. Daivis, “Slip length of water on graphene: Limitations of non-equilibrium molecular dynamics simulations,” J. Chem. Phys. 136, 024705 (2012).
J. Muscatello, F. Jaeger, O. K. Matar, and E. A. Müller, “Optimising water transport through graphene-based membranes: Insights from non-equilibrium molecular dynamics,” ACS Appl. Mater. Interfaces 8, 1233012336 (2016).
S. Gravelle, C. Ybert, L. Bocquet, and L. Joly, “Anomalous capillary filling and wettability reversal in nanochannels,” Phys. Rev. E 93, 033123 (2016).

Data & Media loading...


Article metrics loading...



In this paper, we investigate the hydrodynamic permeance of water through graphene-based membranes, inspired by recent experimental findings on graphene-oxide membranes. We consider the flow across multiple graphene layers having nanoslits in a staggered alignment, with an inter-layer distance ranging from sub-nanometer to a few nanometers. We compare results for the permeability obtained by means of molecular dynamics simulations to continuum predictions obtained by using the lattice Boltzmann calculations and hydrodynamic modelization. This highlights that, in spite of extreme confinement, the permeability across the graphene-based membrane is quantitatively predicted on the basis of a continuum expression, taking properly into account entrance and slippage effects of the confined water flow. Our predictions refute the breakdown of hydrodynamics at small scales in these membrane systems. They constitute a benchmark to which we compare published experimental data.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd