Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/144/23/10.1063/1.4953905
1.
T. M. Clarke and J. R. Durrant, Chem. Rev. 110, 67366767 (2010).
http://dx.doi.org/10.1021/cr900271s
2.
A. A. Bakulin, A. Rao, V. G. Pavelyev, P. H. M. van Loosdrecht, M. S. Pshenichnikov, D. Niedzialek, J. Cornil, D. Beljonne, and R. H. Friend, Science 335, 13401344 (2012).
http://dx.doi.org/10.1126/science.1217745
3.
J. L. Bredas, D. Beljonne, V. Coropceanu, and J. Cornil, Chem. Rev. 104, 49715003 (2004).
http://dx.doi.org/10.1021/cr040084k
4.
J. L. Bredas, J. E. Norton, J. Cornil, and V. Coropceanu, Acc. Chem. Res. 42, 16911699 (2009).
http://dx.doi.org/10.1021/ar900099h
5.
X. Y. Zhu, Q. Yang, and M. Muntwiler, Acc. Chem. Res. 42, 17791787 (2009).
http://dx.doi.org/10.1021/ar800269u
6.
P. Peumans and S. R. Forrest, Chem. Phys. Lett. 398, 2731 (2004).
http://dx.doi.org/10.1016/j.cplett.2004.09.030
7.
A. Liu, S. Zhao, S. B. Rim, J. Wu, M. Konemann, P. Erk, and P. Peumans, Adv. Mater. 20, 10651070 (2008).
http://dx.doi.org/10.1002/adma.200702554
8.
B. A. Gregg, J. Phys. Chem. Lett. 2, 30133015 (2011).
http://dx.doi.org/10.1021/jz2012403
9.
R. G. H. Wilke, G. K. Moghadam, N. H. Lovell, G. J. Suaning, and S. Dokos, J. Neural Eng. 8, 123304 (2011).
http://dx.doi.org/10.1088/1741-2560/8/4/046016
10.
D. Beljonne, J. Cornil, L. Muccioli, C. Zannoni, J. L. Bredas, and F. Castet, Chem. Mater. 23, 591609 (2011).
http://dx.doi.org/10.1021/cm1023426
11.
D. P. McMahon, D. L. Cheung, and A. Troisi, J. Phys. Chem. Lett. 2, 27372741 (2011).
http://dx.doi.org/10.1021/jz201325g
12.
W. Chen, T. Xu, F. He, W. Wang, C. Wang, J. Strzalka, Y. Liu, J. G. Wen, D. J. Miller, J. H. Chen, K. L. Hong, L. P. Yu, and S. B. Darling, Nano Lett. 11, 37073713 (2011).
http://dx.doi.org/10.1021/nl201715q
13.
G. Grancini, D. Polli, D. Fazzi, J. Cabanillas-Gonzalez, G. Cerullo, and G. Lanzani, J. Phys. Chem. Lett. 2, 10991105 (2011).
http://dx.doi.org/10.1021/jz200389b
14.
S. R. Yost, L. P. Wang, and T. Van Voorhis, J. Phys. Chem. C 115, 1443114436 (2011).
http://dx.doi.org/10.1021/jp203387m
15.
G. Grancini, M. Binda, L. Criante, S. Perissinotto, M. Maiuri, D. Fazzi, A. Petrozza, H. J. Egelhaaf, D. Brida, G. Cerullo, and G. Lanzani, Nat. Mater. 12, 594595 (2013).
http://dx.doi.org/10.1038/nmat3693
16.
G. Grancini, M. Maiuri, D. Fazzi, A. Petrozza, H. J. Egelhaaf, D. Brida, G. Cerullo, and G. Lanzani, Nat. Mater. 12, 2933 (2013).
http://dx.doi.org/10.1038/nmat3502
17.
A. E. Jailaubekov, A. P. Willard, J. R. Tritsch, W. L. Chan, N. Sai, R. Gearba, L. G. Kaake, K. J. Williams, K. Leung, P. J. Rossky, and X. Y. Zhu, Nat. Mater. 12, 6673 (2013).
http://dx.doi.org/10.1038/nmat3500
18.
Y. Kobori, R. Noji, and S. Tsuganezawa, J. Phys. Chem. C 117, 15891599 (2013).
http://dx.doi.org/10.1021/jp309421s
19.
T. Miura, M. Aikawa, and Y. Kobori, J. Phys. Chem. Lett. 5, 3035 (2014).
http://dx.doi.org/10.1021/jz402300m
20.
Y. Kobori and T. Miura, J. Phys. Chem. Lett. 6, 113123 (2015).
http://dx.doi.org/10.1021/jz5023202
21.
K. Takimiya, I. Osaka, and M. Nakano, Chem. Mater. 26, 587593 (2014).
http://dx.doi.org/10.1021/cm4021063
22.
A. C. Morteani, P. Sreearunothai, L. M. Herz, R. H. Friend, and C. Silva, Phys. Rev. Lett. 92, 247402 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.247402
23.
J. G. Muller, J. M. Lupton, J. Feldmann, U. Lemmer, M. C. Scharber, N. S. Sariciftci, C. J. Brabec, and U. Scherf, Phys. Rev. B 72, 195208 (2005).
http://dx.doi.org/10.1103/physrevb.72.195208
24.
H. Ohkita, S. Cook, Y. Astuti, W. Duffy, S. Tierney, W. Zhang, M. Heeney, I. McCulloch, J. Nelson, D. D. C. Bradley, and J. R. Durrant, J. Am. Chem. Soc. 130, 30303042 (2008).
http://dx.doi.org/10.1021/ja076568q
25.
M. Muntwiler, Q. Yang, W. A. Tisdale, and X. Y. Zhu, Phys. Rev. Lett. 101, 196403 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.196403
26.
S. D. Dimitrov, A. A. Bakulin, C. B. Nielsen, B. C. Schroeder, J. P. Du, H. Bronstein, I. McCulloch, R. H. Friend, and J. R. Durrant, J. Am. Chem. Soc. 134, 1818918192 (2012).
http://dx.doi.org/10.1021/ja308177d
27.
H. Tamura and I. Burghardt, J. Am. Chem. Soc. 135, 1636416367 (2013).
http://dx.doi.org/10.1021/ja4093874
28.
L. Han, X. X. Zhong, W. Z. Liang, and Y. Zhao, J. Chem. Phys. 140, 214107 (2014).
http://dx.doi.org/10.1063/1.4879955
29.
T. Shimazaki and T. Nakajima, Phys. Chem. Chem. Phys. 17, 1253812544 (2015).
http://dx.doi.org/10.1039/C5CP00740B
30.
V. I. Arkhipov, E. V. Emelianova, and H. Bassler, Phys. Rev. Lett. 82, 13211324 (1999).
http://dx.doi.org/10.1103/PhysRevLett.82.1321
31.
V. I. Arkhipov, E. V. Emelianova, S. Barth, and H. Bassler, Phys. Rev. B 61, 82078214 (2000).
http://dx.doi.org/10.1103/PhysRevB.61.8207
32.
J. C. Knights and E. A. Davis, J. Phys. Chem. Solids 35, 543 (1974).
http://dx.doi.org/10.1016/S0022-3697(74)80009-0
33.
O. Rubel, S. D. Baranovskii, W. Stolz, and F. Gebhard, Phys. Rev. Lett. 100, 196602 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.196602
34.
A. V. Nenashev, S. D. Baranovskii, M. Wiemer, F. Jansson, R. Osterbacka, A. V. Dvurechenskii, and F. Gebhard, Phys. Rev. B 84, 035210 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.035210
35.
A. Miller and E. Abrahams, Phys. Rev. 120, 745755 (1960).
http://dx.doi.org/10.1103/PhysRev.120.745
36.
R. A. Usmani, Linear Algebra Appl. 212, 413414 (1994).
http://dx.doi.org/10.1016/0024-3795(94)90414-6
37.
R. A. Usmani, Comput. Math. Appl. 27, 5966 (1994).
http://dx.doi.org/10.1016/0898-1221(94)90066-3
38.
C. M. d. Fonseca, J. Comput. Appl. Math. 200, 283 (2007).
http://dx.doi.org/10.1016/j.cam.2005.08.047
39.
L. Onsager, J. Chem. Phys. 2, 599615 (1934).
http://dx.doi.org/10.1063/1.1749541
40.
J. Frenkel, Phys. Rev. 54, 647648 (1938).
http://dx.doi.org/10.1103/PhysRev.54.647
41.
M. D. Tabak and P. J. Warter, Phys. Rev. 173, 899907 (1968).
http://dx.doi.org/10.1103/PhysRev.173.899
42.
K. M. Hong and J. Noolandi, Surf. Sci. 75, 561576 (1978).
http://dx.doi.org/10.1016/0039-6028(78)90179-6
43.
N. Tessler, Y. Preezant, N. Rappaport, and Y. Roichman, Adv. Mater. 21, 27412761 (2009).
http://dx.doi.org/10.1002/adma.200803541
44.
F. Gajdos, H. Oberhofer, M. Dupuis, and J. Blumberger, J. Phys. Chem. Lett. 4, 10121017 (2013).
http://dx.doi.org/10.1021/jz400227c
45.
J. Tsutsumi, H. Matsuzaki, N. Kanai, T. Yamada, and T. Hasegawa, J. Phys. Chem. C 117, 1676916773 (2013).
http://dx.doi.org/10.1021/jp404094e
46.
I. G. Scheblykin, A. Yartsev, T. Pullerits, V. Gulbinas, and V. Sundstrom, J. Phys. Chem. B 111, 63036321 (2007).
http://dx.doi.org/10.1021/jp068864f
47.
J. M. Szarko, B. S. Rolczynski, S. J. Lou, T. Xu, J. Strzalka, T. J. Marks, L. P. Yu, and L. X. Chen, Adv. Funct. Mater. 24, 1026 (2014).
http://dx.doi.org/10.1002/adfm.201301820
48.
T. Shimazaki, M. Hashimoto, and T. Maeda, in Proceedings of the 3rd International Workshop on Software Engineering for High Performance Computing in Computational Science and Engineering (Association for Computing Machinery, 2015), p. 9.
http://dx.doi.org/10.1145/2830168.2830170
49.
H. Bassler and A. Kohler, Phys. Chem. Chem. Phys. 17, 2845128462 (2015).
http://dx.doi.org/10.1039/c5cp04110d
50.
S. D. Baranovskii, M. Wiemer, A. V. Nenashev, F. Jansson, and F. Gebhardt, J. Phys. Chem. Lett. 3, 12141221 (2012).
http://dx.doi.org/10.1021/jz300123k
51.
M. Wiemer, M. Koch, U. Lemmer, A. B. Pevtsov, and S. D. Baranovskii, Org. Electron. 15, 24612467 (2014).
http://dx.doi.org/10.1016/j.orgel.2014.07.025
52.
B. C. Thompson and J. M. J. Frechet, Angew. Chem., Int. Ed. 47, 5877 (2008).
http://dx.doi.org/10.1002/anie.200702506
53.
J. M. Guo, H. Ohkita, H. Benten, and S. Ito, J. Am. Chem. Soc. 132, 61546164 (2010).
http://dx.doi.org/10.1021/ja100302p
54.
O. G. Reid, R. D. Pensack, Y. Song, G. D. Scholes, and G. Rumbles, Chem. Mater. 26, 561575 (2014).
http://dx.doi.org/10.1021/cm4027144
55.
Y. Tamai, K. Tsuda, H. Ohkita, H. Benten, and S. Ito, Phys. Chem. Chem. Phys. 16, 2033820346 (2014).
http://dx.doi.org/10.1039/C4CP01820F
56.
K. Takagi, T. Nagase, T. Kobayashi, and H. Naito, App. Phys. Lett. 108, 053305 (2016).
http://dx.doi.org/10.1063/1.4941235
http://aip.metastore.ingenta.com/content/aip/journal/jcp/144/23/10.1063/1.4953905
Loading
/content/aip/journal/jcp/144/23/10.1063/1.4953905
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/144/23/10.1063/1.4953905
2016-06-21
2016-09-26

Abstract

This paper discusses the exciton dissociation process at the donor–acceptor interface in organic photocells. In our previous study, we introduced a local temperature to handle the hot charge-transfer (CT) state and calculated the exciton dissociation probability based on the 1D organic semiconductor model [T. Shimazaki and T. Nakajima, Phys. Chem. Chem. Phys. , 12538 (2015)]. Although the hot CT state plays an essential role in exciton dissociations, the probabilities calculated are not high enough to efficiently separate bound electron–hole pairs. This paper focuses on the dimensional (entropy) effect together with the hot CT state effect and shows that cooperative behavior between both effects can improve the exciton dissociation process. In addition, we discuss cooperative effects with site-disorders and external-electric-fields.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/144/23/1.4953905.html;jsessionid=UeEO4pW-3nb8deTmiqIXFRlc.x-aip-live-06?itemId=/content/aip/journal/jcp/144/23/10.1063/1.4953905&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/144/23/10.1063/1.4953905&pageURL=http://scitation.aip.org/content/aip/journal/jcp/144/23/10.1063/1.4953905'
Right1,Right2,Right3,