Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/144/23/10.1063/1.4954239
1.
F. H. Ree and W. G. Hoover, J. Chem. Phys. 40, 2048 (1964).
http://dx.doi.org/10.1063/1.1725456
2.
H. L. Frisch and J. K. Percus, Phys. Rev. A 35, 4696 (1987).
http://dx.doi.org/10.1103/PhysRevA.35.4696
3.
M. Luban and J. P. J. Michels, Phys. Rev. A 41, 6796 (1990).
http://dx.doi.org/10.1103/PhysRevA.41.6796
4.
H. L. Frisch, in Condensed Matter Theories, edited by L. Blum and F. B. Malik (Plenum Press, New York, 1993), Vol. 8, pp. 443448.
5.
H. L. Frisch and J. K. Percus, Phys. Rev. E 60, 2942 (1999).
http://dx.doi.org/10.1103/PhysRevE.60.2942
6.
G. Parisi and F. Slanina, Eur. Phys. J. B 8, 603 (1999).
http://dx.doi.org/10.1007/s100510050727
7.
G. Parisi and F. Slanina, Phys. Rev. E 62, 6554 (2000).
http://dx.doi.org/10.1103/PhysRevE.62.6554
8.
G. Parisi, J. Stat. Phys. 132, 207 (2008).
http://dx.doi.org/10.1007/s10955-008-9539-6
9.
P. Charbonneau, A. Ikeda, G. Parisi, and F. Zamponi, Phys. Rev. Lett. 107, 185702 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.185702
10.
J. Kurchan, G. Parisi, and F. Zamponi, J. Stat. Mech. 2012, P10012.
http://dx.doi.org/10.1088/1742-5468/2012/10/P10012
11.
P. Charbonneau, J. Kurchan, G. Parisi, P. Urbani, and F. Zamponi, Nat. Commun. 5, 3725 (2014).
http://dx.doi.org/10.1038/ncomms4725
12.
T. Maimbourg, J. Kurchan, and F. Zamponi, Phys. Rev. Lett. 116, 015902 (2016).
http://dx.doi.org/10.1103/PhysRevLett.116.015902
13.
S. A. Rice and P. Gray, The Statistical Mechanics of Simple Liquids (Interscience, New York, 1965).
14.
H. N. V. Temperley, J. S. Rowlinson, and G. S. Rushbrooke, Physics of Simple Liquids (Wiley, New York, 1968).
15.
J.-L. Barrat and J.-P. Hansen, Basic Concepts for Simple and Complex Liquids (Cambridge University Press, 2003).
16.
B. Kirchner, Phys. Rep. 440, 1 (2007).
http://dx.doi.org/10.1016/j.physrep.2006.11.005
17.
J.-P. Hansen and I. R. McDonald, Theory of Simple Liquids: With Applications to Soft Matter, 4th ed. (Academic, New York, 2013).
18.
T. S. Ingebrigtsen, T. B. Schrøder, and J. C. Dyre, Phys. Rev. X 2, 011011 (2012).
http://dx.doi.org/10.1103/physrevx.2.011011
19.
T. Maimbourg and J. Kurchan, e-print arXiv:1603.05023 (2016).
20.
J. Kurchan, T. Maimbourg, and F. Zamponi, J. Stat. Mech. 2016, 033210.
http://dx.doi.org/10.1088/1742-5468/2016/03/033210
21.
A. K. Bacher and J. C. Dyre, Colloid Polym. Sci. 292, 1971 (2014).
http://dx.doi.org/10.1007/s00396-014-3290-0
22.
A. K. Bacher, T. B. Schrøder, and J. C. Dyre, Nat. Commun. 5, 5424 (2014).
http://dx.doi.org/10.1038/ncomms6424
23.
D. Gundermann, U. R. Pedersen, T. Hecksher, N. P. Bailey, B. Jakobsen, T. Christensen, N. B. Olsen, T. B. Schrøder, D. Fragiadakis, R. Casalini, C. M. Roland, J. C. Dyre, and K. Niss, Nat. Phys. 7, 816 (2011).
http://dx.doi.org/10.1038/nphys2031
24.
L. Bøhling, T. S. Ingebrigtsen, A. Grzybowski, M. Paluch, J. C. Dyre, and T. B. Schrøder, New J. Phys. 14, 113035 (2012).
http://dx.doi.org/10.1088/1367-2630/14/11/113035
25.
L. A. Roed, D. Gundermann, J. C. Dyre, and K. Niss, J. Chem. Phys. 139, 101101 (2013).
http://dx.doi.org/10.1063/1.4821163
26.
W. Xiao, J. Tofteskov, T. V. Christensen, J. C. Dyre, and K. Niss, J. Non-Cryst. Solids 407, 190 (2015).
http://dx.doi.org/10.1016/j.jnoncrysol.2014.08.041
27.
J. C. Dyre, J. Phys. Chem. B 118, 10007 (2014).
http://dx.doi.org/10.1021/jp501852b
28.
F. Hummel, G. Kresse, J. C. Dyre, and U. R. Pedersen, Phys. Rev. B 92, 174116 (2015).
http://dx.doi.org/10.1103/PhysRevB.92.174116
29.
A. Malins, J. Eggers, and C. P. Royall, J. Chem. Phys. 139, 234505 (2013).
http://dx.doi.org/10.1063/1.4830416
30.
E. H. Abramson, J. Phys. Chem. B 118, 11792 (2014).
http://dx.doi.org/10.1021/jp5079696
31.
J. Fernandez and E. R. Lopez, in Experimental Thermodynamics: Advances in Transport Properties of Fluids (Royal Society of Chemistry, 2014), Chap. 9.3, pp. 307317.
32.
E. Flenner, H. Staley, and G. Szamel, Phys. Rev. Lett. 112, 097801 (2014).
http://dx.doi.org/10.1103/PhysRevLett.112.097801
33.
S. Prasad and C. Chakravarty, J. Chem. Phys. 140, 164501 (2014).
http://dx.doi.org/10.1063/1.4870823
34.
U. Buchenau, J. Non-Cryst. Solids 407, 179 (2015).
http://dx.doi.org/10.1016/j.jnoncrysol.2014.08.025
35.
K. Grzybowska, A. Grzybowski, S. Pawlus, J. Pionteck, and M. Paluch, Phys. Rev. E 91, 062305 (2015).
http://dx.doi.org/10.1103/PhysRevE.91.062305
36.
K. R. Harris and M. Kanakubo, Phys. Chem. Chem. Phys. 17, 23977 (2015).
http://dx.doi.org/10.1039/c5cp04277a
37.
D. M. Heyes, D. Dini, and A. C. Branka, Phys. Status Solidi (b) 252, 1514 (2015).
http://dx.doi.org/10.1002/pssb.201451695
38.
T. S. Ingebrigtsen and H. Tanaka, J. Phys. Chem. B 119, 11052 (2015).
http://dx.doi.org/10.1021/acs.jpcb.5b02329
39.
W. K. Kipnusu, M. Elsayed, W. Kossack, S. Pawlus, K. Adrjanowicz, M. Tress, E. U. Mapesa, R. Krause-Rehberg, K. Kaminski, and F. Kremer, J. Phys. Chem. Lett. 6, 3708 (2015).
http://dx.doi.org/10.1021/acs.jpclett.5b01533
40.
J. W. P. Schmelzer and T. V. Tropin, J. Non-Cryst. Solids 407, 170 (2015).
http://dx.doi.org/10.1016/j.jnoncrysol.2014.07.049
41.
S. A. Khrapak, B. Klumov, L. Couedel, and H. M. Thomas, Phys. Plasmas 23, 023702 (2016).
http://dx.doi.org/10.1063/1.4942169
42.
K. Adrjanowicz, J. Pionteck, and M. Paluch, RSC Adv. 6, 49370 (2016).
http://dx.doi.org/10.1039/C6RA08406K
43.
T. B. Schrøder and J. C. Dyre, J. Chem. Phys. 141, 204502 (2014).
http://dx.doi.org/10.1063/1.4901215
44.
M. Bishop and P. A. Whitlock, J. Stat. Phys. 126, 299 (2007).
http://dx.doi.org/10.1007/s10955-006-9266-9
45.
B. Smit and D. Frenkel, J. Chem. Phys. 94, 5663 (1991).
http://dx.doi.org/10.1063/1.460477
46.
H. Okumura and F. Yonezawa, J. Chem. Phys. 113, 9162 (2000).
http://dx.doi.org/10.1063/1.1320828
47.
M. Hloucha and S. I. Sandler, J. Chem. Phys. 111, 8043 (1999).
http://dx.doi.org/10.1063/1.480138
48.
R. C. van Schaik, H. J. C. Berendsen, A. E. Torda, and W. F. van Gunsteren, J. Mol. Biol. 234, 751 (1993).
http://dx.doi.org/10.1006/jmbi.1993.1624
49.
M. Bishop, A. Masters, and J. H. R. Clarke, J. Chem. Phys. 110, 11449 (1999).
http://dx.doi.org/10.1063/1.479086
50.
W. R. P. Scott, P. H. Hünenberger, I. G. Tironi, A. E. Mark, S. R. Billeter, J. Fennen, A. E. Torda, T. Huber, P. Krüger, and W. F. van Gunsteren, J. Phys. Chem. A 103, 3596 (1999).
http://dx.doi.org/10.1021/jp984217f
51.
L. Costigliola, “Isomorph theory and extensions,” Ph.D. thesis, Roskilde University, 2016; Computer code for simulating in arbitrary dimensions available at http://dirac.ruc.dk/~lorenzoc.
52.
M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Oxford Science Publications, 1987).
53.
S. Toxvaerd and J. C. Dyre, J. Chem. Phys. 134, 081102 (2011).
http://dx.doi.org/10.1063/1.3558787
54.
N. P. Bailey, U. R. Pedersen, N. Gnan, T. B. Schrøder, and J. C. Dyre, J. Chem. Phys. 129, 184507 (2008).
http://dx.doi.org/10.1063/1.2982247
55.
N. P. Bailey, T. B. Schrøder, and J. C. Dyre, Phys. Rev. E 90, 042310 (2014).
http://dx.doi.org/10.1103/PhysRevE.90.042310
56.
D. E. Albrechtsen, A. E. Olsen, U. R. Pedersen, T. B. Schrøder, and J. C. Dyre, Phys. Rev. B 90, 094106 (2014).
http://dx.doi.org/10.1103/PhysRevB.90.094106
57.
Y. Song, R. M. Stratt, and E. A. Mason, J. Chem. Phys. 88, 1126 (1988).
http://dx.doi.org/10.1063/1.454231
58.
Y. Song, E. A. Mason, and R. M. Stratt, J. Phys. Chem. 93, 6916 (1989).
http://dx.doi.org/10.1021/j100356a008
59.
M. Bishop, P. A. Whitlock, and D. Klein, J. Chem. Phys. 122, 074508 (2005).
http://dx.doi.org/10.1063/1.1848091
60.
P. A. Whitlock, M. Bishop, and J. L. Tiglias, J. Chem. Phys. 126, 224505 (2007).
http://dx.doi.org/10.1063/1.2743031
61.
D. Coslovich, A. Ikeda, and K. Miyazaki, Phys. Rev. E 93, 042602 (2016).
http://dx.doi.org/10.1103/PhysRevE.93.042602
62.
R. Mari and J. Kurchan, J. Chem. Phys. 135, 124504 (2011).
http://dx.doi.org/10.1063/1.3626802
63.
J. J. Potoff and A. Z. Panagiotopoulos, J. Chem. Phys. 109, 10914 (1998).
http://dx.doi.org/10.1063/1.477787
64.
D. M. Heyes, CMST 21, 169 (2015).
http://dx.doi.org/10.12921/cmst.2015.21.04.001
65.
L. Costigliola, T. B. Schrøder, and J. C. Dyre, Phys. Chem. Chem. Phys. 18, 14678 (2016).
http://dx.doi.org/10.1039/C5CP06363A
66.
M. Rovere, D. W. Heermann, and K. Binder, J. Phys.: Condens. Matter 2, 7009 (1990).
http://dx.doi.org/10.1088/0953-8984/2/33/013
67.
N. Gnan, T. B. Schrøder, U. R. Pedersen, N. P. Bailey, and J. C. Dyre, J. Chem. Phys. 131, 234504 (2009).
http://dx.doi.org/10.1063/1.3265957
68.
L. Bøhling, N. P. Bailey, T. B. Schrøder, and J. C. Dyre, J. Chem. Phys. 140, 124510 (2014).
http://dx.doi.org/10.1063/1.4869114
69.
N. P. Bailey, L. Bøhling, A. A. Veldhorst, T. B. Schrøder, and J. C. Dyre, J. Chem. Phys. 139, 184506 (2013).
http://dx.doi.org/10.1063/1.4827090
http://aip.metastore.ingenta.com/content/aip/journal/jcp/144/23/10.1063/1.4954239
Loading
/content/aip/journal/jcp/144/23/10.1063/1.4954239
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/144/23/10.1063/1.4954239
2016-06-21
2016-12-06

Abstract

The recent theoretical prediction by Maimbourg and Kurchan [e-print arXiv:1603.05023 (2016)] that for regular pair-potential systems the virial potential-energy correlation coefficient increases towards unity as the dimension goes to infinity is investigated for the standard 12-6 Lennard-Jones fluid. This is done by computer simulations for = 2, 3, 4 going from the critical point along the critical isotherm/isochore to higher density/temperature. In both cases the virial potential-energy correlation coefficient increases significantly. For a given density and temperature relative to the critical point, with increasing number of dimension the Lennard-Jones system conforms better to the hidden-scale-invariance property characterized by high virial potential-energy correlations (a property that leads to the existence of isomorphs in the thermodynamic phase diagram, implying that it becomes effectively one-dimensional in regard to structure and dynamics). The present paper also gives the first numerical demonstration of isomorph invariance of structure and dynamics in four dimensions. Our findings emphasize the need for a universally applicable 1/ expansion in liquid-state theory; we conjecture that the systems known to obey hidden scale invariance in three dimensions are those for which the yet-to-be-developed 1/ expansion converges rapidly.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/144/23/1.4954239.html;jsessionid=zLW0oG5XcWcDZccnLxkLu-5n.x-aip-live-02?itemId=/content/aip/journal/jcp/144/23/10.1063/1.4954239&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/144/23/10.1063/1.4954239&pageURL=http://scitation.aip.org/content/aip/journal/jcp/144/23/10.1063/1.4954239'
Right1,Right2,Right3,