Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/144/24/10.1063/1.4954243
1.
R. E. Blankenship, Molecular Mechanisms of Photosynthesis (Blackwell Science, Oxford, 2002).
2.
Y. C. Cheng and G. R. Fleming, Annu. Rev. Phys. Chem. 60, 241 (2009);
http://dx.doi.org/10.1146/annurev.physchem.040808.090259
L. A. Pachon and P. Brumer, Phys. Chem. Chem. Phys. 14, 10094 (2012).
http://dx.doi.org/10.1039/c2cp40815e
3.
P. Würfel, Physics of Solar Cells: From Principles to New Concepts (Wiley-VCH, Weinheim, 2005).
4.
F. Rieke and D. A. Baylor, Rev. Mod. Phys. 70, 1027 (1998).
http://dx.doi.org/10.1103/revmodphys.70.1027
5.
T. V. Tscherbul and P. Brumer, J. Phys. Chem. A 118, 3100 (2014).
http://dx.doi.org/10.1021/jp501700t
6.
T. V. Tscherbul and P. Brumer, Phys. Chem. Chem. Phys. 17, 30904 (2015).
http://dx.doi.org/10.1039/C5CP01388G
7.
D. Segal and A. Nitzan, J. Chem. Phys. 122, 194704 (2005);
http://dx.doi.org/10.1063/1.1900063
D. Segal, Phys. Rev. B 73, 205415 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.205415
8.
C. Creatore, M. A. Parker, S. Emmott, and A. W. Chin, Phys. Rev. Lett. 111, 253601 (2013).
http://dx.doi.org/10.1103/PhysRevLett.111.253601
9.
Y. Zhang, S. Oh, F. H. Alharbi, G. S. Engel, and S. Kais, Phys. Chem. Chem. Phys. 17, 5743 (2015).
http://dx.doi.org/10.1039/C4CP05310A
10.
M. O. Scully, K. R. Chapin, K. E. Dorfman, M. B. Kim, and A. Svidzinsky, Proc. Natl. Acad. Sci. U. S. A. 108, 15097 (2011).
http://dx.doi.org/10.1073/pnas.1110234108
11.
K. E. Dorfman, D. V. Voronine, S. Mukamel, and M. O. Scully, Proc. Natl. Acad. Sci. U. S. A. 110, 2746 (2013).
http://dx.doi.org/10.1073/pnas.1212666110
12.
G. D. Scholes, G. R. Fleming, A. Olaya-Castro, and R. van Grondelle, Nat. Chem. 3, 763 (2011).
http://dx.doi.org/10.1038/nchem.1145
13.
D. M. Jonas, Annu. Rev. Phys. Chem. 54, 425 (2003).
http://dx.doi.org/10.1146/annurev.physchem.54.011002.103907
14.
G. S. Engel, T. R. Calhoun, E. L. Read, T. K. Ahn, T. Mancal, Y. C. Cheng, R. E. Blankenship, and G. R. Fleming, Nature (London) 446, 782 (2007).
http://dx.doi.org/10.1038/nature05678
15.
E. Collini, C. Y. Wong, K. E. Wilk, P. M. Curmi, P. Brumer, and G. D. Scholes, Nature (London) 463, 644 (2010).
http://dx.doi.org/10.1038/nature08811
16.
A. Chenu and G. D. Scholes, Annu. Rev. Phys. Chem. 66, 69 (2015).
http://dx.doi.org/10.1146/annurev-physchem-040214-121713
17.
N. Lambert, Y.-N. Chen, Y.-C. Cheng, C.-M. Li, G.-Y. Chen, and F. Nori, Nat. Phys. 9, 10 (2013).
http://dx.doi.org/10.1038/nphys2474
18.
R. d. J. León-Montiel, I. Kassal, and J. P. Torres, J. Phys. Chem. B 118, 1058810594 (2014).
http://dx.doi.org/10.1021/jp505179h
19.
X.-P. Jiang and P. Brumer, J. Chem. Phys. 94, 5833 (1991);
http://dx.doi.org/10.1063/1.460467
P. Brumer and M. Shapiro, Proc. Natl. Acad. Sci. U. S. A. 109, 19575 (2012).
http://dx.doi.org/10.1073/pnas.1211209109
20.
T. Mancal and L. Valkunas, New J. Phys. 12, 065044 (2010).
http://dx.doi.org/10.1088/1367-2630/12/6/065044
21.
V. Tiwari, W. K. Peters, and D. M. Jonas, Proc. Natl. Acad. Sci. U. S. A. 110, 1203 (2013);
J. Ols̆ina, A. G. Dijkstra, C. Wang, and J. Cao, e-print arXiv:1408.5385v1 (2014).
22.
A. Chenu, A. M. Brańczyk, G. D. Scholes, and J. E. Sipe, Phys. Rev. Lett. 114, 213601 (2015).
http://dx.doi.org/10.1103/PhysRevLett.114.213601
23.
L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, Cambridge, UK, 1995), Chap. 13.
24.
I. Kassal, J. Yuen-Zhou, and S. Rahimi-Keshari, J. Phys. Chem. Lett. 4, 362 (2013).
http://dx.doi.org/10.1021/jz301872b
25.
T. Grinev and P. Brumer, J. Chem. Phys. 143, 244313 (2015).
http://dx.doi.org/10.1063/1.4938028
26.
C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Atom-Photon Interactions: Basic Process and Applications (Wiley-VCH, Weinheim, 2004).
27.
R. Loudon, The Quantum Theory of Light, 3rd ed. (Oxford University Press, Oxford, 2000).
28.
M. Fleischauer, C. H. Keitel, M. O. Scully, and C. Su, Opt. Commun. 87, 109 (1992).
http://dx.doi.org/10.1016/0030-4018(92)90389-9
29.
V. V. Kozlov, Y. Rostovtsev, and M. O. Scully, Phys. Rev. A 74, 063829 (2006).
http://dx.doi.org/10.1103/PhysRevA.74.063829
30.
D. Gelbwaser-Klimovsky, W. Niedenzu, P. Brumer, and G. Kurizki, Sci. Rep. 5, 14413 (2015).
http://dx.doi.org/10.1038/srep14413
31.
M. Kiffner, M. Macovei, J. Evers, and C. H. Keitel, Prog. Opt. 55, 85 (2010).
http://dx.doi.org/10.1016/B978-0-444-53705-8.00003-5
32.
G. S. Agarwal, Quantum Statistical Theories of Spontaneous Emission and their Relation to Other Approaches (Springer-Verlag, Berlin, 1974).
33.
M. Fleischauer, A. Imamoglu, and J. P. Marangos, Rev. Mod. Phys. 77, 633 (2005).
http://dx.doi.org/10.1103/revmodphys.77.633
34.
S. Harris, Phys. Today 50(7), 36 (1997).
http://dx.doi.org/10.1063/1.881806
35.
L. V. Hau, S. Harris, Z. Dutton, and C. H. Behroozi, Nature 397, 594 (1999).
http://dx.doi.org/10.1038/17561
36.
M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, UK, 1997).
37.
A. Dodin, T. V. Tscherbul, and P. Brumer, “Coherent dynamics of V-type systems driven by time dependent incoherent radiation” (unpublished).
38.
Note that while Fig. 3 of Ref. 40 shows the absolute magnitude of the coherence vs. time, the time evolution is not discussed in that paper, which focuses on the coherences in the long-time limit.
39.
B.-Q. Ou, L.-M. Liang, and C.-Z. Li, Opt. Commun. 281, 4940 (2008).
http://dx.doi.org/10.1016/j.optcom.2008.06.037
40.
G. S. Agarwal and S. Menon, Phys. Rev. A 63, 023818 (2001).
http://dx.doi.org/10.1103/PhysRevA.63.023818
41.
G. C. Hegerfeldt and M. B. Plenio, Phys. Rev. A 47, 2186 (1993).
http://dx.doi.org/10.1103/PhysRevA.47.2186
42.
T. P. Altenmüller, Z. Phys. D 34, 157 (1995).
http://dx.doi.org/10.1007/BF01437684
43.
S. Menon and G. S. Agarwal, e-print arXiv:quant-ph/9902021v1 (1999).
44.
T. V. Tscherbul and P. Brumer, Phys. Rev. Lett. 113, 113601 (2014).
http://dx.doi.org/10.1103/PhysRevLett.113.113601
45.
T. V. Tscherbul and P. Brumer, J. Chem. Phys. 142, 104107 (2015).
http://dx.doi.org/10.1063/1.4908130
46.
W. E. Boyce and R. C. DiPrima, Elementary Differential Equations, 9th ed. (Wiley, NY, 2008).
47.
D. Morin, Introduction to Classical Mechanics (Cambridge University Press, UK, 2008).
48.
Z. S. Sadeq and P. Brumer, J. Chem. Phys. 140, 074104 (2014).
http://dx.doi.org/10.1063/1.4864759
49.
T. V. Tscherbul and P. Brumer, Phys. Rev. A 89, 013423 (2014).
http://dx.doi.org/10.1103/PhysRevA.89.013423
http://aip.metastore.ingenta.com/content/aip/journal/jcp/144/24/10.1063/1.4954243
Loading
/content/aip/journal/jcp/144/24/10.1063/1.4954243
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/144/24/10.1063/1.4954243
2016-06-27
2016-12-11

Abstract

Closed-form analytic solutions to non-secular Bloch-Redfield master equations for quantum dynamics of a V-type system driven by weak coupling to a thermal bath, relevant to light harvesting processes, are obtained and discussed. We focus on noise-induced Fano coherences among the excited states induced by incoherent driving of the V-system initially in the ground state. For suddenly turned-on incoherent driving, the time evolution of the coherences is determined by the damping parameter , where are the radiative decay rates of the excited levels = 1, 2, and depends on the excited-state level splitting Δ > 0 and the angle between the transition dipole moments in the energy basis. The coherences oscillate as a function of time in the underdamped limit ( ≫ 1), approach a long-lived quasi-steady state in the overdamped limit ( ≪ 1), and display an intermediate behavior at critical damping ( = 1). The sudden incoherent turn-on is shown to generate a mixture of excited eigenstates | 〉 and | , which is remarkably long-lived in the overdamped limit (where and are the incoherent pumping rates). Formation of this coherent superposition the decay rate from the excited states to the ground state. In the strongly asymmetric V-system where the coupling strengths between the ground state and the excited states differ significantly, additional asymptotic quasistationary coherences are identified, which arise due to slow equilibration of one of the excited states. Finally, we demonstrate that noise-induced Fano coherences are maximized with respect to populations when = and the transition dipole moments are fully aligned.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/144/24/1.4954243.html;jsessionid=rs47trsRGVYt4isKd_sb3w_V.x-aip-live-02?itemId=/content/aip/journal/jcp/144/24/10.1063/1.4954243&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/144/24/10.1063/1.4954243&pageURL=http://scitation.aip.org/content/aip/journal/jcp/144/24/10.1063/1.4954243'
Right1,Right2,Right3,