Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/144/24/10.1063/1.4954664
1.
A. Abragam, The Principles of Nuclear Magnetism (Clarendon Press, Oxford, 1961).
2.
C. P. Slichter, Principles of Magnetic Resonance, 3rd ed. (Springer-Verlag, Berlin, Heidelberg, New York, 1990).
3.
J. P. Cohen-Addad, Prog. Nucl. Magn. Reson. Spectrosc. 25, 1 (1993).
http://dx.doi.org/10.1016/0079-6565(93)80004-D
4.
R. Kimmich, NMR Tomography, Diffusometry, Relaxometry (Springer, Berlin, 1997).
5.
N. Fatkullin, T. Ikehara, H. Jinnai, S. Kawata, R. Kimmich, T. Nishi, Y. Nishikawa, and H.-B. Sun, Adv. Polym. Sci. 170, 1 (2004).
http://dx.doi.org/10.1007/b12766
6.
K. Saalwächter, Prog. Nucl. Magn. Reson. Spectrosc. 51, 1 (2007).
http://dx.doi.org/10.1016/j.pnmrs.2007.01.001
7.
D. Kruk, A. Herrmann, and E. A. Rössler, Prog. Nucl. Magn. Reson. Spectrosc. 63, 33 (2012).
http://dx.doi.org/10.1016/j.pnmrs.2011.08.001
8.
E. A. Rössler, S. Stapf, and N. Fatkullin, Curr. Opin. Colloid Interface Sci. 18(3), 173 (2013).
http://dx.doi.org/10.1016/j.cocis.2013.03.005
9.
N. Fatkullin, S. Stapf, M. Hofmann, R. Meier, and E. A. Rössler, J. Non-Cryst. Solids 407, 309 (2015).
http://dx.doi.org/10.1016/j.jnoncrysol.2014.07.008
10.
R. C. Ball, P. T. Callaghan, and E. T. Samulski, J. Chem. Phys. 106, 7352 (1997).
http://dx.doi.org/10.1063/1.473696
11.
R. Kimmich, N. Fatkullin, R.-O. Seitter, and K. Gille, J. Chem. Phys. 108, 2173 (1998).
http://dx.doi.org/10.1063/1.475597
12.
M. Kehr, N. Fatkullin, and R. Kimmich, J. Chem. Phys. 126, 094903 (2007).
http://dx.doi.org/10.1063/1.2435357
13.
M. Kehr, N. Fatkullin, and R. Kimmich, J. Chem. Phys. 127, 084911 (2007).
http://dx.doi.org/10.1063/1.2773732
14.
S. Kariyo, A. Brodin, C. Gainaru, A. Herrmann, J. Hintermeyer, H. Schick, V. N. Novikov, and E. A. Rössler, Macromolecules 41, 5322 (2008).
http://dx.doi.org/10.1021/ma702758j
15.
S. Kariyo, A. Herrmann, C. Gainaru, H. Schick, A. Brodin, V. N. Novikov, and E. A. Rössler, Macromolecules 41, 5313 (2008).
http://dx.doi.org/10.1021/ma702771s
16.
A. Herrmann, B. Kresse, J. Gmeiner, A. Privalov, D. Kruk, F. Fujara, and E. A. Rössler, Macromolecules 45, 1408 (2012).
http://dx.doi.org/10.1021/ma202489y
17.
A. Herrmann, B. Kresse, J. Gmeiner, A. F. Privalov, D. Kruk, F. Fujara, and E. Rössler, Macromolecules 4, 6516 (2012).
http://dx.doi.org/10.1021/ma301099h
18.
B. Kresse, M. Hofmann, A. F. Privalov, N. Fatkullin, F. Fujara, and E. A. Rössler, Macromolecules 48(13), 4491 (2012).
http://dx.doi.org/10.1021/acs.macromol.5b00855
19.
R. Graf, A. Heuer, and H. W. Spiess, Phys. Rev. Lett. 80, 5738 (1998).
http://dx.doi.org/10.1103/PhysRevLett.80.5738
20.
T. Dollase, R. Graf, A. Heuer, and H. W. Spiess, Macromolecules 34, 298 (2001).
http://dx.doi.org/10.1021/ma0013915
21.
K. Saalwächter, Macromol. Rapid Commun. 23, 286 (2002).
http://dx.doi.org/10.1002/1521-3927(20020301)23:4<286::AID-MARC286>3.0.CO;2-U
22.
M. E. Ries and M. G. Brereton, Phys. Chem. Chem. Phys. 11, 6918 (2009).
http://dx.doi.org/10.1039/b905350f
23.
S. Ok, M. Steinhart, A. Serbescu, C. Franz, F. V. Chavez, and K. Saalwächter, Macromolecules 43, 4429 (2010).
http://dx.doi.org/10.1021/ma1003248
24.
F. V. Chavez and K. Saalwächter, Macromolecules 44, 1560 (2011).
http://dx.doi.org/10.1021/ma102571u
25.
K. Saalwächter, ChemPhysChem 14, 3000 (2013).
http://dx.doi.org/10.1002/cphc.201300254
26.
Yu. Ya. Gotlib, M. I. Lifshitz, V. A. Shevelev, I. S. Lishanskij, and I. V. Balanina, Vysokomol. Soedin. A18, 2299 (1976).
27.
V. D. Fedotov, V. M. Chernov, and T. N. Khazanovich, Vysokomol. Soedin. A20, 919 (1978).
28.
J. P. Cohen-Addad, M. Domard, and S. Boileau, J. Chem. Phys. 75, 4107 (1981).
http://dx.doi.org/10.1063/1.442517
29.
T. P. Kulagina, V. V. Marchenkov, and B. N. Provotorov, Polym. Sci. U.S.S.R. 31, 420 (1984).
http://dx.doi.org/10.1016/0032-3950(89)90400-0
30.
M. G. Brereton, Macromolecules 22, 3667 (1989).
http://dx.doi.org/10.1021/ma00199a028
31.
M. G. Brereton, Macromolecules 23, 1119 (1990).
http://dx.doi.org/10.1021/ma00206a034
32.
P. G. Klein, C. H. Adams, M. G. Brereton, M. E. Ries, T. M. Nicholson, L. R. Hutchings, and R. W. Richards, Macromolecules 31, 8871 (1998).
http://dx.doi.org/10.1021/ma980513e
33.
V. M. Chernov and G. S. Krasnopol’skii, J. Exp. Theor. Phys. 107, 302 (2008).
http://dx.doi.org/10.1134/S1063776108080141
34.
R. Kimmich, E. Fischer, P. Callaghan, and N. Fatkullin, J. Magn. Reson., Ser. A 117, 53 (1995).
http://dx.doi.org/10.1006/jmra.1995.9973
35.
N. Fatkullin, A. Gubaidullin, C. Mattea, and S. Stapf, J. Chem. Phys. 137, 224907 (2012).
http://dx.doi.org/10.1063/1.4769977
36.
N. Fatkullin, C. Mattea, and S. Stapf, J. Chem. Phys. 139, 194905 (2013).
http://dx.doi.org/10.1063/1.4830410
37.
N. Fatkullin, A. Gubaidullin, and S. Stapf, J. Chem. Phys. 132, 094903 (2010).
http://dx.doi.org/10.1063/1.3336832
38.
P. G. de Gennes, Scaling Concepts in Polymer Physics (Cornell University Press, Ithaka, 1979).
39.
M. Doi and S. F. Edwards, The Theory of Polymer Dynamics (Clarendon Press, Oxford, 1989).
40.
A. Yu. Grosberg and A. R. Khokhlov, Statistical Physics of Macromolecules (AIP Press, 1994).
41.
G. Strobl, The Physics of Polymers (Springer, 1997).
42.
K. S. Schweizer, M. Fuchs, G. Szamel, M. Guenza, and H. Tang, Macromol. Theory Simul. 6, 1037 (1997).
http://dx.doi.org/10.1002/mats.1997.040060604
43.
R. Kimmich, H. Weber, S. Stapf, and N. Fatkullin, J. Non-Cryst. Solids 172, 689 (1994).
http://dx.doi.org/10.1016/0022-3093(94)90565-7
44.
M. A. Kroutieva, N. F. Fatkullin, and R. Kimmich, Polym. Sci., Ser. A 47, 1716 (2005).
45.
L. J. Fetters, D. J. Lohse, D. Richter, T. A. Witten, and A. Zirkel, Macromolecules 27(17), 4639 (1994).
http://dx.doi.org/10.1021/ma00095a001
46.
B. Schmidtke, M. Hofmann, A. Lichtinger, and E. A. Rössler, Macromolecules 48(9), 3005 (2015).
http://dx.doi.org/10.1021/acs.macromol.5b00204
47.
D. Richter, M. Monkenbusch, A. Arbe, and J. Colmenero, Adv. Polym. Sci. 174, 1 (2005).
http://dx.doi.org/10.1007/b106578
48.
E. Fischer, R. Kimmich, and N. Fatkullin, J. Chem. Phys. 106, 9883 (1997).
http://dx.doi.org/10.1063/1.473876
http://aip.metastore.ingenta.com/content/aip/journal/jcp/144/24/10.1063/1.4954664
Loading
/content/aip/journal/jcp/144/24/10.1063/1.4954664
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/144/24/10.1063/1.4954664
2016-06-22
2016-09-27

Abstract

A simple and fast method for the investigation of segmental diffusion in high molar mass polymer melts is presented. The method is based on a special function, called proton dipolar-correlation build-up function, which is constructed from Hahn Echo signals measured at times and /2. The initial rise of this function contains additive contributions from both inter- and intramolecular magnetic dipole-dipole interactions. The intermolecular contribution depends on the relative mean squared displacements (MSDs) of polymer segments from different macromolecules, while the intramolecular part reflects segmental reorientations. Separation of both contributions via isotope dilution provides access to segmental displacements in polymer melts at millisecond range, which is hardly accessible by other methods. The feasibility of the method is illustrated by investigating protonated and deuterated polybutadiene melts with molecular mass 196 000 g/mol at different temperatures. The observed exponent of the power law of the segmental MSD is close to 0.32 ± 0.03 at times when the root MSD is in between 45 Å and 75 Å, and the intermolecular proton dipole-dipole contribution to the total proton Hahn Echo NMR signal is larger than 50% and increases with time.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/144/24/1.4954664.html;jsessionid=PujnjdJ82ypg0ISqK2EpdfEI.x-aip-live-03?itemId=/content/aip/journal/jcp/144/24/10.1063/1.4954664&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/144/24/10.1063/1.4954664&pageURL=http://scitation.aip.org/content/aip/journal/jcp/144/24/10.1063/1.4954664'
Right1,Right2,Right3,