Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
M. Govoni, I. Marri, and S. Ossicini, Nat. Photonics 6, 672 (2012).
E. C. Cho, S. Park, X. Hao, D. Song, G. Conibeer, S. C. Park, and M. A. Green, Nanotechnology 19, 245201 (2008).
J. B. Baxter and E. S. Aydil, Appl. Phys. Lett. 86, 053114 (2005).
R. Plass, S. Pelet, J. Krueger, M. Gratzel, and U. Bach, J. Phys. Chem. B 106, 7578 (2002).
Y. Xin, K. Nishio, and K. Saitow, Appl. Phys. Lett. 106, 201102 (2015).
K. D. Hirschman, L. Tsybeskov, S. P. Duttagupta, and P. M. Fauchet, Nature 384, 338 (1996).
X. H. Gao, Y. Y. Cui, R. M. Levenson, L. W. K. Chung, and S. M. Nie, Nat. Biotechnol. 22, 969 (2004).
J.-H. Park, L. Gu, G. von Maltzahn, E. Ruoslahti, S. N. Bhatia, and M. J. Sailor, Nat. Mater. 8, 331 (2009).
J. M. Buriak, Chem. Commun. 12, 1051 (1999).
J. Aldana, Y. A. Wang, and X. G. Peng, J. Am. Chem. Soc. 123, 8844 (2001).
W. L. Wilson, P. F. Szajowski, and L. E. Brus, Science 262, 1242 (1993).
L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, and F. Priolo, Nature 408, 440 (2000).
R. Anthony and U. Kortshagen, Phys. Rev. B 80, 115407 (2009).
D. Timmerman, J. Valenta, K. Dohnalova, W. D. A. M. de Boer, and T. Gregorkiewicz, Nat. Nanotechnol. 6, 710 (2011).
F. Trani, G. Cantele, D. Ninno, and G. Iadonisi, Phys. Rev. B 72, 075423 (2005).
V. Kocevski, O. Eriksson, and J. Rusz, Phys. Rev. B 87, 245401 (2013).
P. Hapala, K. Kůsová, I. Pelant, and P. Jelínek, Phys. Rev. B 87, 195420 (2013).
W. J. I. DeBenedetti, S. K. Chiu, C. M. Radlinger, R. J. Ellison, B. A. Manhat, J. Z. Zhang, J. Y. Shi, and A. M. Goforth, J. Phys. Chem. C 119, 9595 (2015).
B. Gelloz, H. Sano, R. Boukherroub, D. D. M. Wayner, D. J. Lockwood, and N. Koshida, Appl. Phys. Lett. 83, 2342 (2003).
L. M. Wheeler, N. R. Neale, T. Chen, and U. R. Kortshagen, Nat. Commun. 4, 2197 (2013).
J. D. Holmes, K. J. Ziegler, R. C. Doty, L. E. Pell, K. P. Johnston, and B. A. Korgel, J. Am. Chem. Soc. 123, 3743 (2001).
D. S. English, L. E. Pell, Z. H. Yu, P. F. Barbara, and B. A. Korgel, Nano Lett. 2, 681 (2002).
Y. Ding, M. Sugaya, Q. Liu, S. Zhou, and T. Nozaki, Nano Energy 10, 322 (2014).
K. Keunen, A. Stesmans, and V. V. Afanas’ev, Phys. Rev. B 84, 085329 (2011).
Y. Li, P. Liang, Z. Hu, S. Guo, Q. You, J. Sun, N. Xu, and J. Wu, Appl. Surf. Sci. 300, 178 (2014).
F. A. Reboredo and G. Galli, J. Phys. Chem. B 109, 1072 (2005).
R. N. Pereira, D. J. Rowe, R. J. Anthony, and U. Kortshagen, Phys. Rev. B 83, 155327 (2011).
Y. Saito and A. Yoshida, Philos. Mag. B 66, 219 (1992).
J. J. Wu and U. Kortshagen, RSC Adv. 5, 103822 (2015).
H. Li, Z. Wu, and M. T. Lusk, J. Phys. Chem. C 118, 46 (2014).
M. Lannoo, C. Delerue, and G. Allan, J. Lumin. 57, 243 (1993).
N. P. Brawand, M. Voros, and G. Galli, Nanoscale 7, 3737 (2015).
C.-Y. Liu, Z. C. Holman, and U. R. Kortshagen, Nano Lett. 9, 449 (2009).
J. B. Miller, N. Dandu, K. A. Velizhanin, R. J. Anthony, U. R. Kortshagen, D. M. Kroll, S. Kilina, and E. K. Hobbie, ACS Nano 9, 9772 (2015).
R. J. Hamers, J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.–Process., Meas., Phenom. 6, 1462 (1988).
H. Labidi, M. Taucer, M. Rashidi, M. Koleini, L. Livadaru, J. Pitters, M. Cloutier, M. Salomons, and R. A. Wolkow, New J. Phys. 17, 073023 (2015).
P. G. Piva, G. A. DiLabio, L. Livadaru, and R. A. Wolkow, Phys. Rev. B 90, 155422 (2014).
S. R. Schofield, P. Studer, C. F. Hirjibehedin, N. J. Curson, G. Aeppli, and D. R. Bowler, Nat. Commun. 4, 1649 (2013).
C. J. Chen, Introduction to Scanning Tunneling Microscopy (Oxford University Press, New York, 2008).
M. B. Haider, J. L. Pitters, G. A. DiLabio, L. Livadaru, J. Y. Mutus, and R. A. Wolkow, Phys. Rev. Lett. 102, 046805 (2009).
J. L. Pitters, L. Livadaru, M. B. Haider, and R. A. Wolkow, J. Chem. Phys. 134, 064712 (2011).
M. Engelund, R. Zuzak, S. Godlewski, M. Kolmer, T. Frederiksen, A. García-Lekue, D. Sánchez-Portal, and M. Szymonski, Sci. Rep. 5, 14496 (2015).
O. Wolf, M. Dasog, Z. Yang, I. Balberg, J. G. C. Veinot, and O. Millo, Nano Lett. 13, 2516 (2013).
D. A. Kislitsyn, V. Kocevski, J. M. Mills, S.-K. Chiu, C. F. Gervasi, B. N. Taber, A. E. Rosenfield, O. Eriksson, J. Rusz, A. M. Goforth, and G. V. Nazin, J. Phys. Chem. Lett. 7, 1047 (2016).
J. D. Hackley, D. A. Kislitsyn, D. K. Beaman, S. Ulrich, and G. V. Nazin, Rev. Sci. Instrum. 85, 103704 (2014).
See supplementary material at for details of experimental approach and theoretical methods, as well as additional results.[Supplementary Material]
L. Soukiassian, A. J. Mayne, M. Carbone, and G. Dujardin, Phys. Rev. B 68, 035303 (2003).
A. Bellec, D. Riedel, G. Dujardin, O. Boudrioua, L. Chaput, L. Stauffer, and P. Sonnet, Phys. Rev. B 80, 245434 (2009).
W. Ye, K. Min, P. Peña Martin, A. A. Rockett, N. R. Aluru, and J. W. Lyding, Surf. Sci. 609, 147 (2013).
T. C. Shen, C. Wang, G. C. Abeln, J. R. Tucker, J. W. Lyding, P. Avouris, and R. E. Walkup, Science 268, 1590 (1995).
R. S. Becker, G. S. Higashi, Y. J. Chabal, and A. J. Becker, Phys. Rev. Lett. 65, 1917 (1990).
A. Bellec, D. Riedel, G. Dujardin, N. Rompotis, and L. N. Kantorovich, Phys. Rev. B 78, 165302 (2008).
P. Avouris, R. E. Walkup, A. R. Rossi, H. C. Akpati, P. Nordlander, T. C. Shen, G. C. Abeln, and J. W. Lyding, Surf. Sci. 363, 368 (1996).
G. V. Nazin, S. W. Wu, and W. Ho, Proc. Natl. Acad. Sci. U. S. A. 102, 8832 (2005).
G. V. Nazin, X. H. Qiu, and W. Ho, J. Chem. Phys. 122, 181105 (2005).
V. Kocevski, O. Eriksson, and J. Rusz, Phys. Rev. B 91, 125402 (2015).
Z. Sun, I. Swart, C. Delerue, D. Vanmaekelbergh, and P. Liljeroth, Phys. Rev. Lett. 102, 196401 (2009).
N. A. Pradhan, N. Liu, C. Silien, and W. Ho, Nano Lett. 5, 55 (2005).
S. W. Wu, G. V. Nazin, X. Chen, X. H. Qiu, and W. Ho, Phys. Rev. Lett. 93, 236802 (2004).
A. Bellec, L. Chaput, G. Dujardin, D. Riedel, L. Stauffer, and P. Sonnet, Phys. Rev. B 88, 241406 (2013).
S. W. Wu, N. Ogawa, G. V. Nazin, and W. Ho, J. Phys. Chem. C 112, 5241 (2008).
G. W. Brown, H. Grube, M. E. Hawley, S. R. Schofield, N. J. Curson, M. Y. Simmons, and R. G. Clark, J. Appl. Phys. 92, 820 (2002).

Data & Media loading...


Article metrics loading...



We present results of a scanning tunneling spectroscopy (STS) study of the impact of dehydrogenation on the electronic structures of hydrogen-passivated silicon nanocrystals (SiNCs) supported on the Au(111) surface. Gradual dehydrogenation is achieved by injecting high-energy electrons into individual SiNCs, which results, initially, in reduction of the electronic bandgap, and eventually produces midgap electronic states. We use theoretical calculations to show that the STS spectra of midgap states are consistent with the presence of silicon dangling bonds, which are found in different charge states. Our calculations also suggest that the observed initial reduction of the electronic bandgap is attributable to the SiNC surface reconstruction induced by conversion of surface dihydrides to monohydrides due to hydrogen desorption. Our results thus provide the first visualization of the SiNC electronic structure evolution induced by dehydrogenation and provide direct evidence for the existence of diverse dangling bond states on the SiNC surfaces.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd