Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/144/24/10.1063/1.4954833
1.
M. Govoni, I. Marri, and S. Ossicini, Nat. Photonics 6, 672 (2012).
http://dx.doi.org/10.1038/nphoton.2012.206
2.
E. C. Cho, S. Park, X. Hao, D. Song, G. Conibeer, S. C. Park, and M. A. Green, Nanotechnology 19, 245201 (2008).
http://dx.doi.org/10.1088/0957-4484/19/24/245201
3.
J. B. Baxter and E. S. Aydil, Appl. Phys. Lett. 86, 053114 (2005).
http://dx.doi.org/10.1063/1.1861510
4.
R. Plass, S. Pelet, J. Krueger, M. Gratzel, and U. Bach, J. Phys. Chem. B 106, 7578 (2002).
http://dx.doi.org/10.1021/jp020453l
5.
Y. Xin, K. Nishio, and K. Saitow, Appl. Phys. Lett. 106, 201102 (2015).
http://dx.doi.org/10.1063/1.4921415
6.
K. D. Hirschman, L. Tsybeskov, S. P. Duttagupta, and P. M. Fauchet, Nature 384, 338 (1996).
http://dx.doi.org/10.1038/384338a0
7.
X. H. Gao, Y. Y. Cui, R. M. Levenson, L. W. K. Chung, and S. M. Nie, Nat. Biotechnol. 22, 969 (2004).
http://dx.doi.org/10.1038/nbt994
8.
J.-H. Park, L. Gu, G. von Maltzahn, E. Ruoslahti, S. N. Bhatia, and M. J. Sailor, Nat. Mater. 8, 331 (2009).
http://dx.doi.org/10.1038/nmat2398
9.
J. M. Buriak, Chem. Commun. 12, 1051 (1999).
http://dx.doi.org/10.1039/a900108e
10.
J. Aldana, Y. A. Wang, and X. G. Peng, J. Am. Chem. Soc. 123, 8844 (2001).
http://dx.doi.org/10.1021/ja016424q
11.
W. L. Wilson, P. F. Szajowski, and L. E. Brus, Science 262, 1242 (1993).
http://dx.doi.org/10.1126/science.262.5137.1242
12.
L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, and F. Priolo, Nature 408, 440 (2000).
http://dx.doi.org/10.1038/35044012
13.
R. Anthony and U. Kortshagen, Phys. Rev. B 80, 115407 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.115407
14.
D. Timmerman, J. Valenta, K. Dohnalova, W. D. A. M. de Boer, and T. Gregorkiewicz, Nat. Nanotechnol. 6, 710 (2011).
http://dx.doi.org/10.1038/nnano.2011.167
15.
F. Trani, G. Cantele, D. Ninno, and G. Iadonisi, Phys. Rev. B 72, 075423 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.075423
16.
V. Kocevski, O. Eriksson, and J. Rusz, Phys. Rev. B 87, 245401 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.245401
17.
P. Hapala, K. Kůsová, I. Pelant, and P. Jelínek, Phys. Rev. B 87, 195420 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.195420
18.
W. J. I. DeBenedetti, S. K. Chiu, C. M. Radlinger, R. J. Ellison, B. A. Manhat, J. Z. Zhang, J. Y. Shi, and A. M. Goforth, J. Phys. Chem. C 119, 9595 (2015).
http://dx.doi.org/10.1021/acs.jpcc.5b01137
19.
B. Gelloz, H. Sano, R. Boukherroub, D. D. M. Wayner, D. J. Lockwood, and N. Koshida, Appl. Phys. Lett. 83, 2342 (2003).
http://dx.doi.org/10.1063/1.1613812
20.
L. M. Wheeler, N. R. Neale, T. Chen, and U. R. Kortshagen, Nat. Commun. 4, 2197 (2013).
http://dx.doi.org/10.1038/ncomms3197
21.
J. D. Holmes, K. J. Ziegler, R. C. Doty, L. E. Pell, K. P. Johnston, and B. A. Korgel, J. Am. Chem. Soc. 123, 3743 (2001).
http://dx.doi.org/10.1021/ja002956f
22.
D. S. English, L. E. Pell, Z. H. Yu, P. F. Barbara, and B. A. Korgel, Nano Lett. 2, 681 (2002).
http://dx.doi.org/10.1021/nl025538c
23.
Y. Ding, M. Sugaya, Q. Liu, S. Zhou, and T. Nozaki, Nano Energy 10, 322 (2014).
http://dx.doi.org/10.1016/j.nanoen.2014.09.031
24.
K. Keunen, A. Stesmans, and V. V. Afanas’ev, Phys. Rev. B 84, 085329 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.085329
25.
Y. Li, P. Liang, Z. Hu, S. Guo, Q. You, J. Sun, N. Xu, and J. Wu, Appl. Surf. Sci. 300, 178 (2014).
http://dx.doi.org/10.1016/j.apsusc.2014.02.047
26.
F. A. Reboredo and G. Galli, J. Phys. Chem. B 109, 1072 (2005).
http://dx.doi.org/10.1021/jp0462254
27.
R. N. Pereira, D. J. Rowe, R. J. Anthony, and U. Kortshagen, Phys. Rev. B 83, 155327 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.155327
28.
Y. Saito and A. Yoshida, Philos. Mag. B 66, 219 (1992).
http://dx.doi.org/10.1080/13642819208224585
29.
J. J. Wu and U. Kortshagen, RSC Adv. 5, 103822 (2015).
http://dx.doi.org/10.1039/c5ra22827a
30.
H. Li, Z. Wu, and M. T. Lusk, J. Phys. Chem. C 118, 46 (2014).
http://dx.doi.org/10.1021/jp407190p
31.
M. Lannoo, C. Delerue, and G. Allan, J. Lumin. 57, 243 (1993).
http://dx.doi.org/10.1016/0022-2313(93)90142-A
32.
N. P. Brawand, M. Voros, and G. Galli, Nanoscale 7, 3737 (2015).
http://dx.doi.org/10.1039/C4NR06376G
33.
C.-Y. Liu, Z. C. Holman, and U. R. Kortshagen, Nano Lett. 9, 449 (2009).
http://dx.doi.org/10.1021/nl8034338
34.
J. B. Miller, N. Dandu, K. A. Velizhanin, R. J. Anthony, U. R. Kortshagen, D. M. Kroll, S. Kilina, and E. K. Hobbie, ACS Nano 9, 9772 (2015).
http://dx.doi.org/10.1021/acsnano.5b02676
35.
R. J. Hamers, J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.–Process., Meas., Phenom. 6, 1462 (1988).
http://dx.doi.org/10.1116/1.584241
36.
H. Labidi, M. Taucer, M. Rashidi, M. Koleini, L. Livadaru, J. Pitters, M. Cloutier, M. Salomons, and R. A. Wolkow, New J. Phys. 17, 073023 (2015).
http://dx.doi.org/10.1088/1367-2630/17/7/073023
37.
P. G. Piva, G. A. DiLabio, L. Livadaru, and R. A. Wolkow, Phys. Rev. B 90, 155422 (2014).
http://dx.doi.org/10.1103/PhysRevB.90.155422
38.
S. R. Schofield, P. Studer, C. F. Hirjibehedin, N. J. Curson, G. Aeppli, and D. R. Bowler, Nat. Commun. 4, 1649 (2013).
http://dx.doi.org/10.1038/ncomms2679
39.
C. J. Chen, Introduction to Scanning Tunneling Microscopy (Oxford University Press, New York, 2008).
40.
M. B. Haider, J. L. Pitters, G. A. DiLabio, L. Livadaru, J. Y. Mutus, and R. A. Wolkow, Phys. Rev. Lett. 102, 046805 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.046805
41.
J. L. Pitters, L. Livadaru, M. B. Haider, and R. A. Wolkow, J. Chem. Phys. 134, 064712 (2011).
http://dx.doi.org/10.1063/1.3514896
42.
M. Engelund, R. Zuzak, S. Godlewski, M. Kolmer, T. Frederiksen, A. García-Lekue, D. Sánchez-Portal, and M. Szymonski, Sci. Rep. 5, 14496 (2015).
http://dx.doi.org/10.1038/srep14496
43.
O. Wolf, M. Dasog, Z. Yang, I. Balberg, J. G. C. Veinot, and O. Millo, Nano Lett. 13, 2516 (2013).
http://dx.doi.org/10.1021/nl400570p
44.
D. A. Kislitsyn, V. Kocevski, J. M. Mills, S.-K. Chiu, C. F. Gervasi, B. N. Taber, A. E. Rosenfield, O. Eriksson, J. Rusz, A. M. Goforth, and G. V. Nazin, J. Phys. Chem. Lett. 7, 1047 (2016).
http://dx.doi.org/10.1021/acs.jpclett.6b00176
45.
J. D. Hackley, D. A. Kislitsyn, D. K. Beaman, S. Ulrich, and G. V. Nazin, Rev. Sci. Instrum. 85, 103704 (2014).
http://dx.doi.org/10.1063/1.489713946
46.
See supplementary material at http://dx.doi.org/10.1063/1.4954833 for details of experimental approach and theoretical methods, as well as additional results.[Supplementary Material]
47.
L. Soukiassian, A. J. Mayne, M. Carbone, and G. Dujardin, Phys. Rev. B 68, 035303 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.035303
48.
A. Bellec, D. Riedel, G. Dujardin, O. Boudrioua, L. Chaput, L. Stauffer, and P. Sonnet, Phys. Rev. B 80, 245434 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.245434
49.
W. Ye, K. Min, P. Peña Martin, A. A. Rockett, N. R. Aluru, and J. W. Lyding, Surf. Sci. 609, 147 (2013).
http://dx.doi.org/10.1016/j.susc.2012.11.015
50.
T. C. Shen, C. Wang, G. C. Abeln, J. R. Tucker, J. W. Lyding, P. Avouris, and R. E. Walkup, Science 268, 1590 (1995).
http://dx.doi.org/10.1126/science.268.5217.1590
51.
R. S. Becker, G. S. Higashi, Y. J. Chabal, and A. J. Becker, Phys. Rev. Lett. 65, 1917 (1990).
http://dx.doi.org/10.1103/PhysRevLett.65.1917
52.
A. Bellec, D. Riedel, G. Dujardin, N. Rompotis, and L. N. Kantorovich, Phys. Rev. B 78, 165302 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.165302
53.
P. Avouris, R. E. Walkup, A. R. Rossi, H. C. Akpati, P. Nordlander, T. C. Shen, G. C. Abeln, and J. W. Lyding, Surf. Sci. 363, 368 (1996).
http://dx.doi.org/10.1016/0039-6028(96)00163-X
54.
G. V. Nazin, S. W. Wu, and W. Ho, Proc. Natl. Acad. Sci. U. S. A. 102, 8832 (2005).
http://dx.doi.org/10.1073/pnas.0501171102
55.
G. V. Nazin, X. H. Qiu, and W. Ho, J. Chem. Phys. 122, 181105 (2005).
http://dx.doi.org/10.1063/1.1908719
56.
V. Kocevski, O. Eriksson, and J. Rusz, Phys. Rev. B 91, 125402 (2015).
http://dx.doi.org/10.1103/PhysRevB.91.125402
57.
Z. Sun, I. Swart, C. Delerue, D. Vanmaekelbergh, and P. Liljeroth, Phys. Rev. Lett. 102, 196401 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.196401
58.
N. A. Pradhan, N. Liu, C. Silien, and W. Ho, Nano Lett. 5, 55 (2005).
http://dx.doi.org/10.1021/nl0483744
59.
S. W. Wu, G. V. Nazin, X. Chen, X. H. Qiu, and W. Ho, Phys. Rev. Lett. 93, 236802 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.236802
60.
A. Bellec, L. Chaput, G. Dujardin, D. Riedel, L. Stauffer, and P. Sonnet, Phys. Rev. B 88, 241406 (2013).
http://dx.doi.org/10.1103/PhysRevB.88.241406
61.
S. W. Wu, N. Ogawa, G. V. Nazin, and W. Ho, J. Phys. Chem. C 112, 5241 (2008).
http://dx.doi.org/10.1021/jp7114548
62.
G. W. Brown, H. Grube, M. E. Hawley, S. R. Schofield, N. J. Curson, M. Y. Simmons, and R. G. Clark, J. Appl. Phys. 92, 820 (2002).
http://dx.doi.org/10.1063/1.1486047
http://aip.metastore.ingenta.com/content/aip/journal/jcp/144/24/10.1063/1.4954833
Loading
/content/aip/journal/jcp/144/24/10.1063/1.4954833
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/144/24/10.1063/1.4954833
2016-06-28
2016-12-10

Abstract

We present results of a scanning tunneling spectroscopy (STS) study of the impact of dehydrogenation on the electronic structures of hydrogen-passivated silicon nanocrystals (SiNCs) supported on the Au(111) surface. Gradual dehydrogenation is achieved by injecting high-energy electrons into individual SiNCs, which results, initially, in reduction of the electronic bandgap, and eventually produces midgap electronic states. We use theoretical calculations to show that the STS spectra of midgap states are consistent with the presence of silicon dangling bonds, which are found in different charge states. Our calculations also suggest that the observed initial reduction of the electronic bandgap is attributable to the SiNC surface reconstruction induced by conversion of surface dihydrides to monohydrides due to hydrogen desorption. Our results thus provide the first visualization of the SiNC electronic structure evolution induced by dehydrogenation and provide direct evidence for the existence of diverse dangling bond states on the SiNC surfaces.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/144/24/1.4954833.html;jsessionid=VywNExJzE_LN0zJfdipUhjbu.x-aip-live-06?itemId=/content/aip/journal/jcp/144/24/10.1063/1.4954833&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/144/24/10.1063/1.4954833&pageURL=http://scitation.aip.org/content/aip/journal/jcp/144/24/10.1063/1.4954833'
Right1,Right2,Right3,