Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/144/3/10.1063/1.4939791
1.
1.M. K. Beyer and H. Clausen-Schaumann, Chem. Rev. 105(8), 29212948 (2005).
http://dx.doi.org/10.1021/cr030697h
2.
2.D. J. Brockwell, E. Paci, R. C. Zinober, G. S. Beddard, P. D. Olmsted, D. A. Smith, R. N. Perham, and S. E. Radford, Nat. Struct. Biol. 10(9), 731737 (2003).
http://dx.doi.org/10.1038/nsb968
3.
3.P.-C. Li and D. E. Makarov, J. Chem. Phys. 121, 4826 (2004).
http://dx.doi.org/10.1063/1.1778152
4.
4.S. S. M. Konda, J. N. Brantley, B. T. Varghese, K. M. Wiggins, C. W. Bielawski, and D. E. Makarov, J. Am. Chem. Soc. 135(34), 1272212729 (2013).
http://dx.doi.org/10.1021/ja4051108
5.
5.M. E. Fisher and A. B. Kolomeisky, Proc. Natl. Acad. Sci. U. S. A. 96(12), 65976602 (1999).
http://dx.doi.org/10.1073/pnas.96.12.6597
6.
6.M. E. Fisher and A. B. Kolomeisky, Proc. Natl. Acad. Sci. U. S. A. 98(14), 77487753 (2001).
http://dx.doi.org/10.1073/pnas.141080498
7.
7.A. B. Kolomeisky, Motor Proteins and Molecular Motors (CRC Press, 2015).
8.
8.G. E. Fantner, E. Oroudjev, G. Schitter, L. S. Golde, P. Thumer, M. M. Finch, P. Turner, T. Gutsmann, D. E. Morse, H. Hansma, and P. K. Hansma, Biophys. J. 90, 14111418 (2006).
http://dx.doi.org/10.1529/biophysj.105.069344
9.
9.B. L. Smith, T. E. Schaffer, M. Viani, J. B. Thompson, N. A. Frederick, J. Kindt, A. Belcher, G. D. Stucky, D. E. Morse, and P. K. Hansma, Nature 399, 761 (1999).
http://dx.doi.org/10.1038/21607
10.
10.D. E. Makarov, Acc. Chem. Res. 42(2), 281289 (2009).
http://dx.doi.org/10.1021/ar800128x
11.
11.D. E. Makarov, Protein Pept. Lett. 21(3), 217226 (2014).
http://dx.doi.org/10.2174/09298665113209990073
12.
12.A. Matouschek, Curr. Opin. Struct. Biol. 13, 98109 (2003).
http://dx.doi.org/10.1016/S0959-440X(03)00010-1
13.
13.A. Matouschek and C. Bustamante, Nat. Struct. Biol. 10(9), 674676 (2003).
http://dx.doi.org/10.1038/nsb0903-674
14.
14.G. R. Gossweiler, G. B. Hewage, G. Soriano, Q. Wang, G. W. Welshofer, X. Zhao, and S. L. Craig, ACS Macro Lett. 3, 216219 (2014).
http://dx.doi.org/10.1021/mz500031q
15.
15.G. R. Gossweiler, T. B. Kouznetsova, and S. L. Craig, J. Am. Chem. Soc. 137(19), 61486151 (2015).
http://dx.doi.org/10.1021/jacs.5b02492
16.
16.A. L. Black, J. M. Lenhardt, and S. L. Craig, J. Mater. Chem. 21, 16551663 (2011).
http://dx.doi.org/10.1039/C0JM02636K
17.
17.C. L. Brown and S. L. Craig, Chem. Sci. 6(4), 21582165 (2015).
http://dx.doi.org/10.1039/C4SC01945H
18.
18.J. N. Brantley, K. M. Wiggins, and C. W. Bielawski, Polym. Int. 62, 2 (2013).
http://dx.doi.org/10.1002/pi.4350
19.
19.R. Boulatov and T. J. Kucharski, J. Mater. Chem. 21(23), 82378255 (2011).
http://dx.doi.org/10.1039/c0jm04079g
20.
20.Z. Huang and R. Boulatov, Chem. Soc. Rev. 40(5), 23592384 (2011).
http://dx.doi.org/10.1039/c0cs00148a
21.
21.J. Ribas-Arino and D. Marx, Chem. Rev. 112(10), 54125487 (2012).
http://dx.doi.org/10.1021/cr200399q
22.
22.M. Mccullagh, I. Franco, M. A. Ratner, and G. C. Schatz, J. Am. Chem. Soc. 133(10), 34523459 (2011).
http://dx.doi.org/10.1021/ja109071a
23.
23.I. Franco, C. B. George, G. C. Solomon, G. C. Schatz, and M. A. Ratner, J. Am. Chem. Soc. 133(7), 22422249 (2011).
http://dx.doi.org/10.1021/ja1095396
24.
24.S. V. Aradhya and L. Venkataraman, Nat. Nanotechnol. 8(6), 399410 (2013).
http://dx.doi.org/10.1038/nnano.2013.91
25.
25.K. Neupane, D. B. Ritchie, H. Yu, D. A. Foster, F. Wang, and M. T. Woodside, Phys. Rev. Lett. 109(6), 068102 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.068102
26.
26.D. B. Ritchie and M. T. Woodside, Curr. Opin. Struct. Biol. 34, 4351 (2015).
http://dx.doi.org/10.1016/j.sbi.2015.06.006
27.
27.H. Yu, D. R. Dee, X. Liu, A. M. Brigley, I. Sosova, and M. T. Woodside, Proc. Natl. Acad. Sci. U. S. A. 112(27), 83088313 (2015).
http://dx.doi.org/10.1073/pnas.1419197112
28.
28.J. Alegre-Cebollada, R. Perez-Jimenez, P. Kosuri, and J. M. Fernandez, J. Biol. Chem. 285, 1896118966 (2010).
http://dx.doi.org/10.1074/jbc.R109.011932
29.
29.O. A. Saleh, J. Chem. Phys. 142(19), 194902 (2015).
http://dx.doi.org/10.1063/1.4921348
30.
30.O. A. Saleh, D. B. Mcintosh, P. Pincus, and N. Ribeck, Phys. Rev. Lett. 102(6), 068301 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.068301
31.
31.E. Florin, V. Moy, and H. Gaub, Science 264(5157), 415417 (1994).
http://dx.doi.org/10.1126/science.8153628
32.
32.H. Zhao, D. Makarov, and G. Rodin, Int. J. Fract. 167(2), 147155 (2011).
http://dx.doi.org/10.1007/s10704-010-9535-0
33.
33.D. Schutze, K. Holz, J. Muller, M. K. Beyer, U. Luning, and B. Hartke, Angew. Chem. 54(8), 25562559 (2015).
http://dx.doi.org/10.1002/anie.201409691
34.
34.I. Rouzina and V. A. Bloomfield, Biophys. J. 80(2), 882893 (2001).
http://dx.doi.org/10.1016/S0006-3495(01)76067-5
35.
35.D. E. Makarov, Single Molecule Science: Physical Principles and Models (CRC Press, Taylor & Francis Group, Boca Raton, 2015).
36.
36.Y. Suzuki and O. K. Dudko, Phys. Rev. Lett. 104(4), 048101 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.048101
37.
37.S. S. M. Konda, S. M. Avdoshenko, and D. E. Makarov, J. Chem. Phys. 140(10), 104114 (2014).
http://dx.doi.org/10.1063/1.4867500
38.
38.S. S. M. Konda, J. N. Brantley, C. W. Bielawski, and D. E. Makarov, J. Chem. Phys. 135, 164103 (2011).
http://dx.doi.org/10.1063/1.3656367
39.
39.D. E. Makarov, in Single-Molecule Studies of Proteins, edited by A. Oberhauser (Springer, 2012).
40.
40.G. I. Bell, Science 200, 618627 (1978).
http://dx.doi.org/10.1126/science.347575
41.
41.H. Eyring, J. Chem. Phys. 4, 283 (1936).
http://dx.doi.org/10.1063/1.1749836
42.
42.S. N. Zhurkov, Int. J. Fract. Mech. 1(4), 311322 (1965).
43.
43.A. Bailey and N. J. Mosey, J. Chem. Phys. 136, 044102 (2012).
http://dx.doi.org/10.1063/1.3678010
44.
44.Z. Huang and R. Boulatov, Pure App. Chem. 82(4), 931951 (2010).
http://dx.doi.org/10.1351/pac-con-09-11-36
45.
45.C. E. Maloney and D. J. Lacks, Phys. Rev. E 73(6 Pt 1), 061106 (2006).
http://dx.doi.org/10.1103/PhysRevE.73.061106
46.
46.S. M. Avdoshenko and D. E. Makarov, “Reaction coordinates and pathways of mechanochemical transformations,” J. Phys. Chem. B (published online).
http://dx.doi.org/10.1021/acs.jpcb.5b07613
47.
47.O. K. Dudko, A. E. Filippov, J. Klafter, and M. Urbakh, Proc. Natl. Acad. Sci. U. S. A. 100(20), 1137811381 (2003).
http://dx.doi.org/10.1073/pnas.1534554100
48.
48.D. J. Lacks, J. Willis, and M.-P. Robinson, J. Phys. Chem. B 114(33), 1082110825 (2010).
http://dx.doi.org/10.1021/jp106530h
49.
49.D. J. Wales, Science 293(5537), 20672070 (2001).
http://dx.doi.org/10.1126/science.1062565
50.
50.D. J. Wales, Energy Landscapes: Applications to Clusters, Biomolecules and Glasses (Cambridge University Press, 2003).
51.
51.R. Gilmore, Catastrophe Theory for Scientists and Engineers (John Wiley and Sons, New York, Chichester, Brisbane, Toronto, 1981).
52.
52.H. Spikes and W. Tysoe, Tribol. Lett. 59, 21 (2015).
http://dx.doi.org/10.1007/s11249-015-0544-z
53.
53.O. J. Furlong, S. J. Manzi, A. Martini, and W. T. Tysoe, Tribol. Lett. 60, 21 (2015).
http://dx.doi.org/10.1007/s11249-015-0599-x
54.
54.G. Subramanian, N. Mathew, and J. Leiding, J. Chem. Phys. 143(13), 134109 (2015).
http://dx.doi.org/10.1063/1.4932103
55.
55.S. M. Avdoshenko, S. S. Konda, and D. E. Makarov, J. Chem. Phys. 141(13), 134115 (2014).
http://dx.doi.org/10.1063/1.4896944
56.
56.D. J. Wales and T. Head-Gordon, J. Phys. Chem. B 116(29), 83948411 (2012).
http://dx.doi.org/10.1021/jp211806z
57.
57.D. J. Wales, J. Chem. Phys. 142(13), 130901 (2015).
http://dx.doi.org/10.1063/1.4916307
58.
58.M. Hermes and R. Boulatov, J. Am. Chem. Soc. 133(50), 2004420047 (2011).
http://dx.doi.org/10.1021/ja207421v
59.
59.P.-C. Li and D. E. Makarov, J. Chem. Phys. 119, 9260 (2003).
http://dx.doi.org/10.1063/1.1615233
60.
60.P.-C. Li and D. E. Makarov, J. Phys. Chem. B 108(2), 745749 (2004).
http://dx.doi.org/10.1021/jp0363895
61.
61.M. Balsera, S. Stepaniants, S. Izrailev, Y. Oono, and K. Schulten, Biophys. J. 73(3), 12811287 (1997).
http://dx.doi.org/10.1016/S0006-3495(97)78161-X
62.
62.B. Isralewitz, M. Gao, and K. Schulten, Curr. Opin. Struct. Biol. 11, 224230 (2001).
http://dx.doi.org/10.1016/S0959-440X(00)00194-9
63.
63.S. Izrailev, S. Stepaniants, M. Balsera, Y. Oono, and K. Schulten, Biophys. J. 72(4), 15681581 (1997).
http://dx.doi.org/10.1016/S0006-3495(97)78804-0
64.
64.P. Hanggi, P. Talkner, and M. Borkovec, Rev. Mod. Phys. 62, 251 (1990).
http://dx.doi.org/10.1103/revmodphys.62.251
65.
65.V. Barsegov and D. Thirumalai, Proc. Natl. Acad. Sci. U. S. A. 102(6), 18351839 (2005).
http://dx.doi.org/10.1073/pnas.0406938102
66.
66.O. V. Prezhdo and Y. V. Pereverzev, Acc. Chem. Res. 42(6), 693703 (2009).
http://dx.doi.org/10.1021/ar800202z
67.
67.Y. Suzuki and O. K. Dudko, J. Chem. Phys. 134(6), 065102 (2011).
http://dx.doi.org/10.1063/1.3533366
68.
68.S. M. Avdoshenko and D. E. Makarov, J. Chem. Phys. 142(17), 174106 (2015).
http://dx.doi.org/10.1063/1.4919541
69.
69.C. Hyeon and D. Thirumalai, Proc. Natl. Acad. Sci. U. S. A. 102(19), 67896794 (2005).
http://dx.doi.org/10.1073/pnas.0408314102
70.
70.C. Hyeon and D. Thirumalai, Biophys. J. 90(10), 34103427 (2006).
http://dx.doi.org/10.1529/biophysj.105.078030
71.
71.S. M. Kreuzer, T. J. Moon, and R. Elber, J. Chem. Phys. 139(12), 121902 (2013).
http://dx.doi.org/10.1063/1.4811366
72.
72.K. Manibog, H. Li, S. Rakshit, and S. Sivasankar, Nat. Commun. 5, 3941 (2014).
http://dx.doi.org/10.1038/ncomms4941
73.
73.O. K. Dudko, T. G. Graham, and R. B. Best, Phys. Rev. Lett. 107(20), 208301 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.208301
74.
74.S. Kirmizialtin, L. Huang, and D. E. Makarov, J. Chem. Phys. 122, 234915 (2005).
http://dx.doi.org/10.1063/1.1931659
75.
75.R. B. Best, E. Paci, G. Hummer, and O. K. Dudko, J. Phys. Chem. B 112, 59685976 (2008).
http://dx.doi.org/10.1021/jp075955j
76.
76.C. Hyeon and D. Thirumalai, J. Am. Chem. Soc. 130(5), 15381539 (2008).
http://dx.doi.org/10.1021/ja0771641
77.
77.M. Schlierf, Z. T. Yew, M. Rief, and E. Paci, Biophys. J. 99(5), 16201627 (2010).
http://dx.doi.org/10.1016/j.bpj.2010.06.039
78.
78.Z. T. Yew, M. Schlierf, M. Rief, and E. Paci, Phys. Rev. E 81(3 Pt 1), 031923 (2010).
http://dx.doi.org/10.1103/physreve.81.031923
79.
79.B. Jagannathan, P. J. Elms, C. Bustamante, and S. Marqusee, Proc. Natl. Acad. Sci. U. S. A. 109, 17820 (2012).
http://dx.doi.org/10.1073/pnas.1201800109
80.
80.R. Groote, B. M. Szyja, F. A. Leibfarth, C. J. Hawker, N. L. Doltsinis, and R. P. Sijbesma, Macromolecules 47(3), 11871192 (2014).
http://dx.doi.org/10.1021/ma4022339
81.
81.B. T. Marshall, M. Long, J. W. Piper, T. Yago, R. P. Mcever, and C. Zhu, Nature 423(6936), 190193 (2003).
http://dx.doi.org/10.1038/nature01605
82.
82.S. Rakshit and S. Sivasankar, Phys. Chem. Chem. Phys. 16(6), 22112223 (2014).
http://dx.doi.org/10.1039/c3cp53963f
83.
83.E. Evans and K. Ritchie, Biophys. J. 72, 15411555 (1997).
http://dx.doi.org/10.1016/S0006-3495(97)78802-7
84.
84.E. Evans and K. Ritchie, Biophys. J. 76, 2439 (1999).
http://dx.doi.org/10.1016/S0006-3495(99)77399-6
85.
85.D. E. Makarov, P. K. Hansma, and H. Metiu, J. Chem. Phys. 114, 9663 (2001).
http://dx.doi.org/10.1063/1.1369622
86.
86.R. Merkel, P. Nassoy, A. Leung, K. Ritchie, and E. Evans, Nature 397(6714), 5053 (1999).
http://dx.doi.org/10.1038/16219
87.
87.D. J. Lacks, Biophys. J. 88, 34933501 (2005).
http://dx.doi.org/10.1529/biophysj.104.051953
88.
88.O. K. Dudko, G. Hummer, and A. Szabo, Phys. Rev. Lett. 96(10), 108101 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.108101
89.
89.O. K. Dudko, G. Hummer, and A. Szabo, Proc. Natl. Acad. Sci. U. S. A. 105(41), 1575515760 (2008).
http://dx.doi.org/10.1073/pnas.0806085105
90.
90.O. K. Dudko, J. Mathe, A. Szabo, A. Meller, and G. Hummer, Biophys. J. 92(12), 41884195 (2007).
http://dx.doi.org/10.1529/biophysj.106.102855
91.
91.H. S. Smalo and E. Uggerud, Chem. Commun. 48(84), 1044310445 (2012).
http://dx.doi.org/10.1039/c2cc34056a
92.
92.H. S. Smalo and E. Uggerud, Mol. Phys. 111(9-11), 15631573 (2013).
http://dx.doi.org/10.1080/00268976.2013.797116
93.
93.M. F. Pill, S. W. Schmidt, M. K. Beyer, H. Clausen-Schaumann, and A. Kersch, J. Chem. Phys. 140(4), 044321 (2014).
http://dx.doi.org/10.1063/1.4862827
94.
94.H. Lu, B. Isralewitz, A. Krammer, V. Vogel, and K. Schulten, Biophys. J. 75, 662 (1998).
http://dx.doi.org/10.1016/S0006-3495(98)77556-3
95.
95.H. Lu and K. Schulten, Chem. Phys. 247, 141 (1999).
http://dx.doi.org/10.1016/S0301-0104(99)00164-0
96.
96.P. E. Marsalek, H. Lu, H. Li, M. Carrion-Vazquez, A. F. Oberhauser, K. Schulten, and J. Fernandez, Nature 402, 100 (1999).
http://dx.doi.org/10.1038/47083
97.
97.M. Sotomayor and K. Schulten, Science 316(5828), 11441148 (2007).
http://dx.doi.org/10.1126/science.1137591
98.
98.M. T. Ong, J. Leiding, H. Tao, A. M. Virshup, and T. J. Martinez, J. Am. Chem. Soc. 131(18), 63776379 (2009).
http://dx.doi.org/10.1021/ja8095834
99.
99.C. E. Diesendruck, G. I. Peterson, H. J. Kulik, J. A. Kaitz, B. D. Mar, P. A. May, S. R. White, T. J. Martinez, A. J. Boydston, and J. S. Moore, Nat. Chem. 6(7), 623628 (2014).
http://dx.doi.org/10.1038/nchem.1938
100.
100.D. A. Davis, A. Hamilton, J. Yang, L. D. Cremar, G. D. Van, S. L. Potisek, M. T. Ong, P. V. Braun, T. J. Martinez, S. R. White, J. S. Moore, and N. R. Sottos, Nature 459, 6872 (2009).
http://dx.doi.org/10.1038/nature07970
101.
101.J. M. Lenhardt, M. T. Ong, R. Choe, C. R. Evenhuis, T. J. Martinez, and S. L. Craig, Science 329(5995), 10571060 (2010).
http://dx.doi.org/10.1126/science.1193412
102.
102.G. S. Kochhar, G. S. Heverly-Coulson, and N. J. Mosey, Top. Curr. Chem. 369, 37 (2015).
http://dx.doi.org/10.1007/128_2015_648
103.
103.T. Stauch and A. Dreuw, J. Chem. Phys. 140(13), 134107 (2014).
http://dx.doi.org/10.1063/1.4870334
104.
104.T. Stauch and A. Dreuw, J. Chem. Phys. 143(7), 074118 (2015).
http://dx.doi.org/10.1063/1.4928973
105.
105.W. Li, S. A. Edwards, L. Lu, T. Kubar, S. P. Patil, H. Grubmuller, G. Groenhof, and F. Grater, ChemPhysChem 14(12), 26872697 (2013).
http://dx.doi.org/10.1002/cphc.201300252
106.
106.P. Dopieralski, J. Ribas-Arino, P. Anjukandi, M. Krupicka, J. Kiss, and D. Marx, Nat. Chem. 5(8), 685691 (2013).
http://dx.doi.org/10.1038/nchem.1676
107.
107.J. Ribas-Arino, M. Shiga, and D. Marx, Angew. Chem., Int. Ed. 48(23), 41904193 (2009).
http://dx.doi.org/10.1002/anie.200900673
108.
108.G. S. Kochhar, A. Bailey, and N. J. Mosey, Angew. Chem., Int. Ed. 49(41), 74527455 (2010).
http://dx.doi.org/10.1002/anie.201003978
109.
109.M. K. Beyer, J. Chem. Phys. 112(17), 73077312 (2000).
http://dx.doi.org/10.1063/1.481330
110.
110.M. J. Kryger, A. M. Munaretto, and J. S. Moore, J. Am. Chem. Soc. 133, 1899218998 (2011).
http://dx.doi.org/10.1021/ja2086728
111.
111.M. B. Larsen and A. J. Boydston, J. Am. Chem. Soc. 135(22), 81898192 (2013).
http://dx.doi.org/10.1021/ja403757p
112.
112.B. R. Goldsmith, E. D. Sanderson, D. Bean, and B. Peters, J. Chem. Phys. 138(20), 204105 (2013).
http://dx.doi.org/10.1063/1.4807384
113.
113.Y. Tian and R. Boulatov, Chem. Commun. 49(39), 41874189 (2013).
http://dx.doi.org/10.1039/C2CC37095F
114.
114.D. Mehta, T. Chen, J. D. Hauenstein, and D. J. Wales, J. Chem. Phys. 141(12), 121104 (2014).
http://dx.doi.org/10.1063/1.4896657
115.
115.M. T. Woodside and S. M. Block, Annu. Rev. Biophys. 43, 1939 (2014).
http://dx.doi.org/10.1146/annurev-biophys-051013-022754
116.
116.G. Hummer and A. Szabo, Proc. Natl. Acad. Sci. U. S. A. 107, 2144221446 (2010).
http://dx.doi.org/10.1073/pnas.1015661107
117.
117.M. Hinczewski, J. C. Gebhardt, M. Rief, and D. Thirumalai, Proc. Natl. Acad. Sci. U. S. A. 110(12), 45004505 (2013).
http://dx.doi.org/10.1073/pnas.1214051110
118.
118.M. T. Woodside, J. Lambert, and K. S. Beach, Biophys. J. 107(7), 16471653 (2014).
http://dx.doi.org/10.1016/j.bpj.2014.08.007
119.
119.D. E. Makarov, J. Chem. Phys. 141(24), 241103 (2014).
http://dx.doi.org/10.1063/1.4904895
120.
120.G. M. Nam and D. E. Makarov, Protein Sci. 25, 123134 (2016).
http://dx.doi.org/10.1002/pro.2727
121.
121.P. Cossio, G. Hummer, and A. Szabo, Proc. Natl. Acad. Sci. U. S. A. 112, 14248 (2015).
http://dx.doi.org/10.1073/pnas.1519633112
122.
122.R. F. Grote and J. T. Hynes, J. Chem. Phys. 73(6), 27152732 (1980).
http://dx.doi.org/10.1063/1.440485
123.
123.R. F. Grote and J. T. Hynes, J. Chem. Phys. 74(8), 44654475 (1981).
http://dx.doi.org/10.1063/1.441634
124.
124.R. R. Cheng, A. T. Hawk, and D. E. Makarov, J. Chem. Phys. 138, 074112 (2013).
http://dx.doi.org/10.1063/1.4792206
125.
125.D. E. Makarov, J. Chem. Phys. 138, 014102 (2013).
http://dx.doi.org/10.1063/1.4773283
126.
126.A. B. Churnside and T. T. Perkins, FEBS Lett. 588(19), 36213630 (2014).
http://dx.doi.org/10.1016/j.febslet.2014.04.033
127.
127.D. T. Edwards, J. K. Faulk, A. W. Sanders, M. S. Bull, R. Walder, M. A. Leblanc, M. C. Sousa, and T. T. Perkins, Nano Lett. 15(10), 70917098 (2015).
http://dx.doi.org/10.1021/acs.nanolett.5b03166
128.
128.C. He, C. Hu, X. Hu, X. Hu, A. Xiao, T. T. Perkins, and H. Li, Angew. Chem. 54(34), 99219925 (2015).
http://dx.doi.org/10.1002/anie.201502938
129.
129.R. M. Sullan, A. B. Churnside, D. M. Nguyen, M. S. Bull, and T. T. Perkins, Methods 60(2), 131141 (2013).
http://dx.doi.org/10.1016/j.ymeth.2013.03.029
130.
130.F. Rico, L. Gonzalez, I. Casuso, M. Puig-Vidal, and S. Scheuring, Science 342, 741743 (2013).
http://dx.doi.org/10.1126/science.1239764
131.
131.H. Chen, G. Yuan, R. S. Winardhi, M. Yao, I. Popa, J. M. Fernandez, and J. Yan, J. Am. Chem. Soc. 137(10), 35403546 (2015).
http://dx.doi.org/10.1021/ja5119368
132.
132.H. S. Chung, J. M. Louis, and W. A. Eaton, Science 335, 981984 (2012).
http://dx.doi.org/10.1126/science.1215768
133.
133.K. Truex, H. S. Chung, J. M. Louis, and W. A. Eaton, Phys. Rev. Lett. 115(1), 018101 (2015).
http://dx.doi.org/10.1103/PhysRevLett.115.018101
134.
134.H. Yu, A. N. Gupta, X. Liu, K. Neupane, A. M. Brigley, I. Sosova, and M. T. Woodside, Proc. Natl. Acad. Sci. U. S. A. 109(36), 1445214457 (2012).
http://dx.doi.org/10.1073/pnas.1206190109
135.
135.P. Faccioli, M. Sega, F. Pederiva, and H. Orland, Phys. Rev. Lett. 97(10), 108101 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.108101
136.
136.D. E. Makarov, J. Chem. Phys. 143, 194103 (2015).
http://dx.doi.org/10.1063/1.4935706
137.
137.W. K. Kim and R. R. Netz, J. Chem. Phys. 143, 224108 (2015).
http://dx.doi.org/10.1063/1.4936408
http://aip.metastore.ingenta.com/content/aip/journal/jcp/144/3/10.1063/1.4939791
Loading
/content/aip/journal/jcp/144/3/10.1063/1.4939791
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/144/3/10.1063/1.4939791
2016-01-15
2016-12-07

Abstract

Coupling of mechanical forces and chemical transformations is central to the biophysics of molecular machines, polymer chemistry, fracture mechanics, tribology, and other disciplines. As a consequence, the same physical principles and theoretical models should be applicable in all of those fields; in fact, similar models have been invoked (and often repeatedly reinvented) to describe, for example, cell adhesion, dry and wet friction, propagation of cracks, and action of molecular motors. This perspective offers a unified view of these phenomena, described in terms of chemical kinetics with rates of elementary steps that are force dependent. The central question is then to describe how the rate of a chemical transformation (and its other measurable properties such as the transition path) depends on the applied force. I will describe physical models used to answer this question and compare them with experimental measurements, which employ single-molecule force spectroscopy and which become increasingly common. Multidimensionality of the underlying molecular energy landscapes and the ensuing frequent misalignment between chemical and mechanical coordinates result in a number of distinct scenarios, each showing a nontrivial force dependence of the reaction rate. I will discuss these scenarios, their commonness (or its lack), and the prospects for their experimental validation. Finally, I will discuss open issues in the field.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/144/3/1.4939791.html;jsessionid=ieFASUFwKz3hph4quHGi3m61.x-aip-live-03?itemId=/content/aip/journal/jcp/144/3/10.1063/1.4939791&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/144/3/10.1063/1.4939791&pageURL=http://scitation.aip.org/content/aip/journal/jcp/144/3/10.1063/1.4939791'
Right1,Right2,Right3,