Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/144/3/10.1063/1.4940397
1.
1.J. Tao and J. P. Perdew, J. Chem. Phys. 122, 114102 (2005).
http://dx.doi.org/10.1063/1.1862242
2.
2.D. A. Egger and L. Kronik, J. Phys. Chem. Lett. 5, 2728 (2014).
http://dx.doi.org/10.1021/jz5012934
3.
3.W. A. Al-Saidi, V. K. Voora, and K. D. Jordan, J. Chem. Theory Comput. 8, 1503 (2012).
http://dx.doi.org/10.1021/ct200618b
4.
4.O. Hod, J. Chem. Theory Comput. 8, 1360 (2012).
http://dx.doi.org/10.1021/ct200880m
5.
5.A. Otero-de-la-Roza and E. R. Johnson, J. Chem. Phys. 137, 054103 (2012).
http://dx.doi.org/10.1063/1.4738961
6.
6.T. Risthaus and S. Grimme, J. Chem. Theory Comput. 9, 1580 (2013).
http://dx.doi.org/10.1021/ct301081n
7.
7.J. G. Brandenburg and S. Grimme, Top. Curr. Chem. 345, 1 (2014).
http://dx.doi.org/10.1007/128_2013_488
8.
8.A. Otero-de-la-Roza and E. R. Johnson, J. Chem. Theory Comput. 11, 4033 (2015).
http://dx.doi.org/10.1021/acs.jctc.5b00044
9.
9.J. Tao, J. Yang, and A. M. Rappe, J. Chem. Phys. 142, 164302 (2015).
http://dx.doi.org/10.1063/1.4918761
10.
10.B. Sachs, T. O. Wehling, M. I. Katsnelson, and A. I. Lichtenstein, Phys. Rev. B 84, 195414 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.195414
11.
11.T. Buc̆ko, S. Lebègue, J. Hafner, and J. G. Ángyán, Phys. Rev. B 87, 064110 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.064110
12.
12.E. Tapavicza, I.-C. Lin, O. A. von Lilienfeld, T. Tavernelli, M. D. Coutinho-Neto, and U. Rothlisberger, J. Chem. Theory Comput. 3, 1673 (2007).
http://dx.doi.org/10.1021/ct700049s
13.
13.P. Hao, J. Sun, B. Xiao, A. Ruzsinszky, G. I. Csonka, J. Tao, S. Glindmeyer, and J. P. Perdew, J. Chem. Theory Comput. 9, 355 (2013).
http://dx.doi.org/10.1021/ct300868x
14.
14.S. H. Patil and K. T. Tang, J. Chem. Phys. 106, 2298 (1997).
http://dx.doi.org/10.1063/1.473089
15.
15.J. Mitroy and M. W. J. Bromley, Phys. Rev. A 71, 042701 (2005).
http://dx.doi.org/10.1103/PhysRevA.71.042701
16.
16.A. Dalgarno and G. A. Victor, Proc. Phys. Soc. 90, 605 (1967).
http://dx.doi.org/10.1088/0370-1328/90/3/303
17.
17.For non-spherical densities, there is a small anistropic correction to C6, C8, and C10, and odd-order terms such as and will also appear in Eq. (1). They are all beyond the second-order perturbation expression and will not be considered here. For consistency, the anistropic corrections are also excluded in the quoted reference values. For general systems, calculating vdW interactions with C6, C8, and C10 will yield systematic improvement over the interactions just based on C6, and C7 and C9 are unnecessary.
18.
18.A. J. Stone, The Theory of Intermolecular Forces, 2nd ed. (Clarendon Press, Oxford, 2013).
19.
19.S. J. A. van Gisbergen, V. P. Osinga, O. V. Gritsenko, R. van Leeuwen, J. G. Snijders, and E. J. Baerends, J. Chem. Phys. 105, 3142 (1996).
http://dx.doi.org/10.1063/1.472182
20.
20.J. F. Dobson and T. Gould, J. Phys.: Condens. Matter 24, 073201 (2012).
http://dx.doi.org/10.1088/0953-8984/24/7/073201
21.
21.A. D. Becke and E. R. Johnson, J. Chem. Phys. 122, 154104 (2005).
http://dx.doi.org/10.1063/1.1884601
22.
22.A. D. Becke and E. R. Johnson, J. Chem. Phys. 127, 154108 (2007).
http://dx.doi.org/10.1063/1.2795701
23.
23.A. Tkatchenko and M. Scheffler, Phys. Rev. Lett. 102, 073005 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.073005
24.
24.A. Tkatchenko, R. A. DiStasio, R. Car, and M. Scheffler, Phys. Rev. Lett. 108, 236402 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.236402
25.
25.S. Grimme, J. Comput. Chem. 27, 1787 (2006).
http://dx.doi.org/10.1002/jcc.20495
26.
26.S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, J. Chem. Phys. 132, 154104 (2010).
http://dx.doi.org/10.1063/1.3382344
27.
27.M. Dion, H. Rydberg, E. Schröder, D. C. Langreth, and B. I. Lundqvist, Phys. Rev. Lett. 92, 246401 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.246401
28.
28.K. Berland and P. Hyldgaard, Phys. Rev. B 89, 035412 (2014).
http://dx.doi.org/10.1103/PhysRevB.89.035412
29.
29.O. A. Vydrov and T. Van Voorhis, Phys. Rev. A 81, 062708 (2010).
http://dx.doi.org/10.1103/PhysRevA.81.062708
30.
30.S. N. Steinmann and C. Corminboeuf, J. Chem. Phys. 134, 044117 (2011).
http://dx.doi.org/10.1063/1.3545985
31.
31.S. N. Steinmann and C. Corminboeuf, J. Chem. Theory Comput. 7, 3567 (2011).
http://dx.doi.org/10.1021/ct200602x
32.
32.N. A. Lima, J. Chem. Phys. 132, 014110 (2010).
http://dx.doi.org/10.1063/1.3282265
33.
33.A. J. Thakkar, H. Hettema, and P. E. S. Wormer, J. Chem. Phys. 97, 3252 (1992).
http://dx.doi.org/10.1063/1.463012
34.
34.H. Schröder, A. Creon, and T. Schwabe, J. Chem. Theory Comput. 11, 3163 (2015).
http://dx.doi.org/10.1021/acs.jctc.5b00400
35.
35.J. J. Rehr, E. Zaremba, and W. Kohn, Phys. Rev. B 12, 2062 (1975).
http://dx.doi.org/10.1103/PhysRevB.12.2062
36.
36.J. Tao, J. P. Perdew, and A. Ruzsinszky, Phys. Rev. B 81, 233102 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.233102
37.
37.Ph. Lambin, A. A. Lucas, and J.-P. Vigneron, Phys. Rev. B 46, 1794 (1992).
http://dx.doi.org/10.1103/PhysRevB.46.1794
38.
38.E. R. Johnson and A. D. Becke, J. Chem. Phys. 124, 174104 (2006).
http://dx.doi.org/10.1063/1.2190220
39.
39.J. Tao, J. P. Perdew, and A. Ruzsinszky, Proc. Natl. Acad. Sci. U. S. A. 109, 18 (2012).
http://dx.doi.org/10.1073/pnas.1118245108
40.
40.J. Tao and J. P. Perdew, J. Chem. Phys. 141, 141101 (2014).
http://dx.doi.org/10.1063/1.4897957
41.
41.J. Tao, Y. Fang, P. Hao, G. E. Scuseria, A. Ruzsinszky, and J. P. Perdew, J. Chem. Phys. 142, 024312 (2015).
http://dx.doi.org/10.1063/1.4905259
42.
42.A. Ruzsinszky, J. P. Perdew, J. Tao, G. I. Csonka, and J. M. Pitarke, Phys. Rev. Lett. 109, 233203 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.233203
43.
43.J. Tao, J. P. Perdew, and A. Ruzsinszky, Int. J. Mod. Phys. B 27, 1330011 (2013).
http://dx.doi.org/10.1142/S0217979213300119
44.
44.J. Tao and A. M. Rappe, Phys. Rev. Lett. 112, 106101 (2014).
http://dx.doi.org/10.1103/PhysRevLett.112.106101
45.
45.C. F. Bunge, J. A. Barrientos, and A. V. Bunge, At. Data Nucl. Data Tables 53, 113 (1993).
http://dx.doi.org/10.1006/adnd.1993.1003
46.
46.E. A. Mason and L. Monchick, Adv. Chem. Phys. 12, 329 (1967).
47.
47.H. Hettema, P. E. S. Wormer, P. Jørgensen, H. J. Aa. Jensen, and T. Helgaker, J. Chem. Phys. 100, 1297 (1994).
http://dx.doi.org/10.1063/1.467256
48.
48.M. Bartomomei, E. Carmona-Novillo, M. I. Herńandez, J. Campos-Martínez, and R. Herńandez-Lamoneda, J. Comput. Chem. 32, 279 (2011).
http://dx.doi.org/10.1002/jcc.21619
49.
49.F. Visser, P. E. S. Wormer, and P. Stam, J. Chem. Phys. 79, 4973 (1983).
http://dx.doi.org/10.1063/1.445591
50.
50.W. Rijks and P. E. S. Wormer, J. Chem. Phys. 90, 6507 (1989).
http://dx.doi.org/10.1063/1.456317
51.
51.D. Spelsberg, T. Lorenz, and W. Mayer, J. Chem. Phys. 99, 7845 (1993).
http://dx.doi.org/10.1063/1.465663
52.
52.G. F. Thomas, Chem. Phys. 54, 45 (1980).
http://dx.doi.org/10.1016/0301-0104(80)80033-4
53.
53.R. J. Wheatley and T. C. Lillestolen, Mol. Phys. 106, 1545 (2008).
http://dx.doi.org/10.1080/00268970802158270
54.
54.D. Spelsberg, J. Chem. Phys. 111, 9625 (1999).
http://dx.doi.org/10.1063/1.480295
55.
55.H. Hettema, P. E. S. Wormer, and A. J. Thakkar, Mol. Phys. 80, 553 (1993).
http://dx.doi.org/10.1080/00268979300102451
56.
56.C. Hättig and B. A. Hess, J. Chem. Phys. 105, 9948 (1996).
http://dx.doi.org/10.1063/1.472827
57.
57.G. Maroulis and A. J. Thakkar, J. Chem. Phys. 93, 4164 (1990).
http://dx.doi.org/10.1063/1.458749
58.
58.See supplementary material at http://dx.doi.org/10.1063/1.4940397 for the detailed comparison ofC8 and C10 with accurate reference values.[Supplementary Material]
59.
59.D. M. Elking, L. Perera, R. Duke, T. Darden, and L. G. Pedersen, J. Comput. Chem. 32, 3283 (2011).
http://dx.doi.org/10.1002/jcc.21914
60.
60.A. Derevianko, S. G. Porsev, and J. F. Babb, At. Data Nucl. Data Tables 96, 323 (2010).
http://dx.doi.org/10.1016/j.adt.2009.12.002
http://aip.metastore.ingenta.com/content/aip/journal/jcp/144/3/10.1063/1.4940397
Loading
/content/aip/journal/jcp/144/3/10.1063/1.4940397
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/144/3/10.1063/1.4940397
2016-01-20
2016-09-28

Abstract

Due to the absence of the long-range van der Waals (vdW) interaction, conventional density functional theory(DFT) often fails in the description of molecular complexes and solids. In recent years, considerable progress has been made in the development of the vdW correction. However, the vdW correction based on the leading-order coefficient alone can only achieve limited accuracy, while accurate modeling of higher-order coefficients remains a formidable task, due to the strong non-additivity effect. Here, we apply a model dynamic multipole polarizability within a modified single-frequency approximation to calculate and between small molecules. We find that the higher-order vdW coefficients from this model can achieve remarkable accuracy, with mean absolute relative deviations of 5% for and 7% for . Inclusion of accurate higher-order contributions in the vdW correction will effectively enhance the predictive power of DFT in condensed matter physics and quantum chemistry.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/144/3/1.4940397.html;jsessionid=9MY4aX3pJRILcd7cdfZdHOAX.x-aip-live-03?itemId=/content/aip/journal/jcp/144/3/10.1063/1.4940397&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/144/3/10.1063/1.4940397&pageURL=http://scitation.aip.org/content/aip/journal/jcp/144/3/10.1063/1.4940397'
Right1,Right2,Right3,