Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/144/4/10.1063/1.4941089
1.
1.H. Nyquist, Phys. Rev. 32, 110 (1928).
http://dx.doi.org/10.1103/PhysRev.32.110
2.
2.R. Kubo, in Lectures in Theoretical Physics (Interscience Publishers, Inc., New York, 1959), Vol. 1, p. 120.
3.
3.D. Pines and P. Nozières, The Theory of Quantum Liquids (W. A. Benjamin, Inc., New York, 1966).
4.
4.D. V. Matyushov, J. Phys.: Condens. Matter 27, 473001 (2015).
http://dx.doi.org/10.1088/0953-8984/27/47/473001
5.
5.P. Madden and D. Kivelson, Adv. Chem. Phys. 56, 467 (1984).
http://dx.doi.org/10.1002/9780470142806.ch5
6.
6.G. Stell, G. N. Patey, and J. S. Høye, Adv. Chem. Phys. 48, 183 (1981).
http://dx.doi.org/10.1002/9780470142684.ch3
7.
7.See supplementary material at http://dx.doi.org/10.1063/1.4941089 for details of calculations and experimental procedures.[Supplementary Material]
8.
8.I. V. Blazhnov, N. P. Malomuzh, and S. V. Lishchuk, J. Chem. Phys. 121, 6435 (2004).
http://dx.doi.org/10.1063/1.1789474
9.
9.Q.-S. Li, M.-G. Su, and S. Wang, J. Chem. Eng. Data 52, 1141 (2007).
http://dx.doi.org/10.1021/je060496l
10.
10.H. Fröhlich, Theory of Dielectrics (Oxford University Press, Oxford, 1958).
11.
11.L. Onsager, J. Am. Chem. Soc. 58, 1486 (1936).
http://dx.doi.org/10.1021/ja01299a050
12.
12.G. I. Egorov and D. M. Makarov, J. Chem. Thermodyn. 79, 135 (2014).
http://dx.doi.org/10.1016/j.jct.2014.06.031
13.
13.T. Christensen and N. B. Olsen, Phys. Rev. B 49, 15396 (1994).
http://dx.doi.org/10.1103/PhysRevB.49.15396
14.
14.L. Comez, D. Fioretto, F. Scarponi, and G. Monaco, J. Chem. Phys. 119, 6032 (2003).
http://dx.doi.org/10.1063/1.1601608
15.
15.L. D. Landau and E. M. Lifshits, Statistical Physics (Pergamon Press, New York, 1980).
16.
16.C. A. Angell, Science 267, 1924 (1995).
http://dx.doi.org/10.1126/science.267.5206.1924
17.
17.F. G. Parak, Rep. Prog. Phys. 66, 103 (2003).
http://dx.doi.org/10.1088/0034-4885/66/2/201
18.
18.H. Tanaka, Faraday Discuss. 167, 9 (2014).
http://dx.doi.org/10.1039/c3fd00110e
19.
19.Y. Marcus, Ions in Solution and their Solvation (Wiley, New Jersey, 2015).
20.
20.L. Berthier and G. Biroli, Rev. Mod. Phys. 83, 587 (2011).
http://dx.doi.org/10.1103/RevModPhys.83.587
21.
21.L. Berthier, G. Biroli, J.-P. Bouchaud, L. Cipelletti, D. E. Marsi, D. L’Hôte, F. Ladieu, and M. Pierno, Science 310, 1797 (2005).
http://dx.doi.org/10.1126/science.1120714
22.
22.K. Ito, C. T. Moynihan, and C. A. Angell, Nature 398, 492 (1999).
http://dx.doi.org/10.1038/19042
23.
23.L.-M. Wang, C. A. Angell, and R. Richert, J. Chem. Phys. 125, 074505 (2006).
http://dx.doi.org/10.1063/1.2244551
24.
24.G. Adam and J. H. Gibbs, J. Chem. Phys. 43, 139 (1965).
http://dx.doi.org/10.1063/1.1696442
25.
25.L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Pergamon, Oxford, 1984).
26.
26.C. Dalle-Ferrier, C. Thibierge, C. Alba-Simionesco, L. Berthier, G. Biroli, J. P. Bouchaud, F. Ladieu, D. L’Hôte, and G. Tarjus, Phys. Rev. E 76, 041510 (2007).
http://dx.doi.org/10.1103/PhysRevE.76.041510
27.
27.D. R. Martin and D. V. Matyushov, J. Chem. Phys. 129, 174508 (2008).
http://dx.doi.org/10.1063/1.3006313
28.
28.Note that the four-point time correlation function is given as χ4(t) ∝ T2χT(t) (Ref. 20). From Fig. 2, χ4(0) decreases when the temperature is lowered toward the glass transition temperature.
http://aip.metastore.ingenta.com/content/aip/journal/jcp/144/4/10.1063/1.4941089
Loading
/content/aip/journal/jcp/144/4/10.1063/1.4941089
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/144/4/10.1063/1.4941089
2016-01-28
2016-09-27

Abstract

Fluctuations of the dipole moment of a macroscopic dielectric sample are induced by thermal motions. The variance of the sample dipole moment, characterizing the extent of thermal fluctuations, is a decaying function of temperature for many polar liquids. This result is inconsistent with the Nyquist (fluctuation-dissipation) theorem predicting the variance of a macroscopic property to grow linearly with temperature. The reason for a qualitatively different behavior is in strong multi-particle correlations of dipolar orientations. An equation connecting the temperature slope of the dielectric constant to a static three-point correlation function is derived. When applied to experimental data for polar and hydrogen-bonding liquids at normal conditions, the three-point correlations of different liquids fall on a single master curve as a function of the dielectric constant. Static three-point correlation functions can potentially reflect the growing spatial correlation length on approach to the glass transition. However, the measuredtemperature slope of the dielectric constant of glycerol does not indicate a change in such a lengthscale.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/144/4/1.4941089.html;jsessionid=OQfoZ7Fr18oUk0kMrlGeB7Fg.x-aip-live-03?itemId=/content/aip/journal/jcp/144/4/10.1063/1.4941089&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/144/4/10.1063/1.4941089&pageURL=http://scitation.aip.org/content/aip/journal/jcp/144/4/10.1063/1.4941089'
Right1,Right2,Right3,