Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/144/5/10.1063/1.4941330
1.
1.F. H. Stillinger, Science 209, 451 (1980).
http://dx.doi.org/10.1126/science.209.4455.451
2.
2.A. Luzar and D. Chandler, J. Chem. Phys. 98, 8160 (1993).
http://dx.doi.org/10.1063/1.464521
3.
3.R. Torro, P. Bartolini, and R. Righini, Nature 428, 296 (2004).
http://dx.doi.org/10.1038/nature02409
4.
4.N. Agmon, Acc. Chem. Res. 45, 63 (2012).
http://dx.doi.org/10.1021/ar200076s
5.
5.J. R. Errington and P. Debenedetti, Nature 409, 318 (2001).
http://dx.doi.org/10.1038/35053024
6.
6.T. D. Kühne and R. Z. Khaliullin, Nat. Commun. 4, 1450 (2013).
http://dx.doi.org/10.1038/ncomms2459
7.
7.D. Laage and J. T. Hynes, Science 311, 832 (2006).
http://dx.doi.org/10.1126/science.1122154
8.
8.J. T. Titantah and M. Karttunen, Sci. Rep. 3, 2991 (2013).
http://dx.doi.org/10.1038/srep02991
9.
9.E. D. Sloan and C. A. Koh, Clathrate Hydrates of Natural Gases, 3rd ed. (CRC Press, 2008).
10.
10.K. A. Udachin, C. I. Ratcliff, and J. A. Ripmeester, Angew. Chem., Int. Ed. 40, 1303 (2001).
http://dx.doi.org/10.1002/1521-3773(20010401)40:7¡1303::AID-ANIE1303¿3.0.CO;2-9
11.
11.A. Falenty, T. C. Hansen, and W. F. Kuhs, Nature 516, 231 (2014).
http://dx.doi.org/10.1038/nature14014
12.
12.L. A. Báez and P. Clancy, Ann. N. Y. Acad. Sci. 715, 177186 (1994).
http://dx.doi.org/10.1111/j.1749-6632.1994.tb38833.x
13.
13.S. N. Chakraborty and N. J. English, J. Chem. Phys. 143, 154504 (2015).
http://dx.doi.org/10.1063/1.4932681
14.
14.D. J. Hughes, H. Palevsky, W. Kley, and E. Tunkel, Phys. Rev. 119, 872 (1960).
http://dx.doi.org/10.1103/PhysRev.119.872
15.
15.P. von Blanckenhagen, Ber. Bunsenges. Phys. Chem. 76, 891 (1972).
16.
16.J. Li, J. Chem. Phys. 105, 6733 (1996).
http://dx.doi.org/10.1063/1.472525
17.
17.M. Celli, D. Colognesi, L. Ulivi, M. Zoppi, and A. J. Ramirez-Cuesta, J. Phys.: Conf. Ser. 340, 012051 (2012).
http://dx.doi.org/10.1088/1742-6596/340/1/012051
18.
18.N. J. English and J. M. D. Macelroy, Mol. Phys. 100, 3753 (2002).
http://dx.doi.org/10.1080/0026897021000028438
19.
19.J. Li, J. Phys. Chem. B 101, 6237 (1997).
http://dx.doi.org/10.1021/jp963276v
20.
20.J. S. Tse, M. L. Klein, and I. R. McDonald, J. Phys. Chem. 87, 41984203 (1983).
http://dx.doi.org/10.1021/j100244a044
21.
21.J. S. Tse, M. L. Klein, and I. R. McDonald, J. Chem. Phys. 81, 61466153 (1984).
http://dx.doi.org/10.1063/1.447569
22.
22.J. S. Tse, W. R. McKinnon, and M. J. Marchi, Phys. Chem. 91, 41884193 (1987).
http://dx.doi.org/10.1021/j100299a047
23.
23.N. J. English and J. M. D. MacElroy, J. Comput. Chem. 24, 15691581 (2003).
http://dx.doi.org/10.1002/jcc.10303
24.
24.H. Jiang, K. D. Jordan, and C. E. Taylor, J. Phys. Chem. B 111, 6486 (2007).
http://dx.doi.org/10.1021/jp068505k
25.
25.N. J. English and J. S. Tse, J. Phys. Chem. A 115, 6226 (2011).
http://dx.doi.org/10.1021/jp111485w
26.
26.P. D. Gorman, N. J. English, and J. M. D. MacElroy, Phys. Chem. Chem. Phys. 13, 19780 (2011).
http://dx.doi.org/10.1039/c1cp21882d
27.
27.N. J. English and J. M. D. MacElroy, Chem. Eng. Sci. 121, 133 (2015).
http://dx.doi.org/10.1016/j.ces.2014.07.047
28.
28.S. Y. Willow, M. A. Salim, and S. Hirata, Sci. Rep. 5, 14358 (2015).
http://dx.doi.org/10.1038/srep14358
29.
29.P. Zhang, L. Tian, Z. P. Zhang, G. Shao, and J. C. Li, J. Chem. Phys. 137, 044504 (2012).
http://dx.doi.org/10.1063/1.4736853
30.
30.Z. Peng, L. Yang, Y. Hui, H. Sheng-Hao, L. Ying-Bo, L. Mao-Shui, and C. Wei-Yan, Chin. Phys. B 23, 026103 (2014).
http://dx.doi.org/10.1088/1674-1056/23/2/026103
31.
31.D. Bertolini and A. Tani, Mol. Phys. 75, 1047 (1992).
http://dx.doi.org/10.1080/00268979200100811
32.
32.I. M. Svishchev and P. G. Kusalik, J. Chem. Soc., Faraday Trans. 90, 1405 (1994).
http://dx.doi.org/10.1039/ft9949001405
33.
33.J. L. F. Abascal and C. Vega, J. Chem. Phys. 123, 234505 (2005).
http://dx.doi.org/10.1063/1.2121687
34.
34.H. C. Andersen, J. Comput. Phys. 52, 24 (1983).
http://dx.doi.org/10.1016/0021-9991(83)90014-1
35.
35.N. J. English, Mol. Phys. 104, 243 (2006).
http://dx.doi.org/10.1080/14733140500352322
36.
36.R. K. McMullan and G. A. Jeffrey, J. Chem. Phys. 42, 2725 (1965).
http://dx.doi.org/10.1063/1.1703228
37.
37.T. C. W. Mak and R. K. McMullan, J. Chem. Phys. 42, 2732 (1965).
http://dx.doi.org/10.1063/1.1703229
38.
38.A. Rahman and F. H. Stillinger, J. Chem. Phys. 57, 40094017 (1972).
http://dx.doi.org/10.1063/1.1678874
39.
39.J. A. Hayward and J. R. Reimers, J. Chem. Phys. 106, 15 (1997).
http://dx.doi.org/10.1063/1.473300
40.
40.S. Alavi, J. A. Ripmeester, and D. D. Klug, J. Chem. Phys. 123, 024507 (2005).
http://dx.doi.org/10.1063/1.1953577
http://aip.metastore.ingenta.com/content/aip/journal/jcp/144/5/10.1063/1.4941330
Loading
/content/aip/journal/jcp/144/5/10.1063/1.4941330
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/144/5/10.1063/1.4941330
2016-02-02
2016-09-25

Abstract

Equilibrium molecular-dynamics simulations have been performed for liquid water, and on metastable sI and sII polymorphs of empty hydrate lattices, in addition to ice I, in order to study the dynamical properties of librational motion (rotation oscillation) depicted by protons in water molecules. In particular, hydrate lattices were found to display prominent “bifurcated” features, or peaks, at circa 70 and 80-95 meV (or ∼560 and 640-760 cm−1, respectively), also displayed by ice, in essentially quantitative agreement with experimental neutron-scattering data. However, observed differences in dispersion between these librational modes between these two structures (both hydrate polymorphs vis-à-vis ice), owing primarily to density effects, have been decomposed into contributions arising from angular-velocity dynamics about axes in the local molecular frame of water molecules, with in-plane “wagging” and “twisting” rationalising one mode at ∼70 meV, and out-of-plane motion for the higher-frequency band. This was confirmed explicitly by a type of normal-mode analysis, in which only immediate layers of water molecules about the one under consideration were allowed to move. In contrast, liquid water displayed no marked preference for such local in- or out-of-plane modes characterising librational motion, owing to the marked absence of rigid, pentamers or hexamers therein.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/144/5/1.4941330.html;jsessionid=3NOgtM-56-ITI4PCqO4fAr50.x-aip-live-03?itemId=/content/aip/journal/jcp/144/5/10.1063/1.4941330&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/144/5/10.1063/1.4941330&pageURL=http://scitation.aip.org/content/aip/journal/jcp/144/5/10.1063/1.4941330'
Right1,Right2,Right3,