Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/144/5/10.1063/1.4941455
1.
1.R. B. Best, N.-V. Buchete, and G. Hummer, Biophys. J. 395, L07 (2008).
http://dx.doi.org/10.1529/biophysj.108.132696
2.
2.E. A. Cino, W.-Y. Choy, and M. Karttunen, J. Chem. Theory Comput. 8, 2725 (2012).
http://dx.doi.org/10.1021/ct300323g
3.
3.K. A. Beauchamp, Y.-S. Lin, R. Das, and V. S. Pande, J. Chem. Theory Comput. 8, 1409 (2012).
http://dx.doi.org/10.1021/ct2007814
4.
4.R. B. Best and G. Hummer, J. Phys. Chem. B 113, 9004 (2009).
http://dx.doi.org/10.1021/jp901540t
5.
5.K. Lindorff-Larsen, S. Piana, K. Palmo, P. Maragakis, J. L. Klepeis, R. O. Dror, and D. E. Shaw, Proteins: Struct., Funct., Bioinf. 78, 1950 (2010).
http://dx.doi.org/10.1002/prot.22711
6.
6.R. B. Best, X. Zhu, J. Shim, P. E. M. Lopes, J. Mittal, M. Feig, and A. D. MacKerell, Jr., J. Chem. Theory Comput. 8, 3257 (2012).
http://dx.doi.org/10.1021/ct300400x
7.
7.F. Jiang, W. Han, and Y.-D. Wu, Phys. Chem. Chem. Phys. 15, 3413 (2013).
http://dx.doi.org/10.1039/c2cp43633g
8.
8.D. E. Shaw, P. Maragakis, K. Lindorff-Larsen, S. Piana, R. O. Dror, M. P. Eastwood, J. A. Bank, J. M. Jumper, J. K. Salmon, Y. B. Shan, and W. Wriggers, Science 330, 341 (2010).
http://dx.doi.org/10.1126/science.1187409
9.
9.D. M. Zuckerman, in Annual Review of Biophysics, edited by D. C. Rees, K. A. Dill, and J. R. Williamson (Annual Reviews, 2011), Vol. 40, pp. 4162.
10.
10.P. R. L. Markwick and J. A. McCammon, Phys. Chem. Chem. Phys. 13, 20053 (2011).
http://dx.doi.org/10.1039/c1cp22100k
11.
11.H. Fujisaki, K. Moritsugu, Y. Matsunaga, T. Morishita, and L. Maragliano, Front. Bioeng. Biotechnol. 3, 125 (2015).
http://dx.doi.org/10.3389/fbioe.2015.00125
12.
12.A. Morriss-Andrews and J.-E. Shea, in Annual Review of Physical Chemistry, edited by M. A. Johnson and T. J. Martinez (Annual Reviews, 2015), Vol. 66, pp. 643666.
13.
13.O. F. Lange, D. van der Spoel, and B. L. de Groot, Biophys. J. 99, 647 (2010).
http://dx.doi.org/10.1016/j.bpj.2010.04.062
14.
14.K. Lindorff-Larsen, P. Maragakis, S. Piana, M. P. Eastwood, R. O. Dror, and D. E. Shaw, PLoS One 7, e32131 (2012).
http://dx.doi.org/10.1371/journal.pone.0032131
15.
15.D. Nettels, I. V. Gopich, A. Hoffmann, and B. Schuler, Proc. Natl. Acad. Sci. U. S. A. 104, 2655 (2007).
http://dx.doi.org/10.1073/pnas.0611093104
16.
16.H. S. Chung, K. McHale, J. M. Louis, and W. A. Eaton, Science 335, 981 (2012).
http://dx.doi.org/10.1126/science.1215768
17.
17.H. Oikawa, Y. Suzuki, M. Saito, K. Kamagata, M. Arai, and S. Takahashi, Sci. Rep. 3 (2013).
http://dx.doi.org/10.1038/srep02151
18.
18.T. Otosu, K. Ishii, and T. Tahara, Nat. Commun. 6, 7685 (2015).
http://dx.doi.org/10.1038/ncomms8685
19.
19.F. Noé, S. Doose, I. Daidone, M. Löllmann, M. Sauer, J. D. Chodera, and J. C. Smith, Proc. Natl. Acad. Sci. U. S. A. 108, 4822 (2011).
http://dx.doi.org/10.1073/pnas.1004646108
20.
20.B. G. Keller, J.-H. Prinz, and F. Noé, Chem. Phys. 396, 92 (2012).
http://dx.doi.org/10.1016/j.chemphys.2011.08.021
21.
21.B. Lindner, Z. Yi, J.-H. Prinz, J. C. Smith, and F. Noé, J. Chem. Phys. 139, 175101 (2013).
http://dx.doi.org/10.1063/1.4824070
22.
22.Z. Yi, B. Lindner, J.-H. Prinz, F. Noé, and J. C. Smith, J. Chem. Phys. 139, 175102 (2013).
http://dx.doi.org/10.1063/1.4824071
23.
23.M. Groth, J. Malicka, C. Czaplewski, S. Oldziej, L. Lankiewicz, W. Wiczk, and A. Liwo, J. Biomol. NMR 15, 315 (1999).
http://dx.doi.org/10.1023/A:1008349424452
24.
24.B. Różycki, Y. C. Kim, and G. Hummer, Structure 19, 109 (2011).
http://dx.doi.org/10.1016/j.str.2010.10.006
25.
25.K. A. Beauchamp, V. S. Pande, and R. Das, Biophys. J. 106, 1381 (2014).
http://dx.doi.org/10.1016/j.bpj.2014.02.009
26.
26.J. D. Chodera, W. C. Swope, J. W. Pitera, and K. A. Dill, Multiscale Model. Simul. 5, 1214 (2006).
http://dx.doi.org/10.1137/06065146X
27.
27.F. Noé, C. Schütte, E. Vanden-Eijnden, L. Reich, and T. R. Weikl, Proc. Natl. Acad. Sci. U. S. A. 106, 19011 (2009).
http://dx.doi.org/10.1073/pnas.0905466106
28.
28.J.-H. Prinz, M. Held, J. C. Smith, and Noé Frank, Multiscale Model. Simul. 9, 545 (2011).
http://dx.doi.org/10.1137/100789191
29.
29.J. D. Chodera and F. Noé, Curr. Opin. Struct. Biol. 25, 135 (2014).
http://dx.doi.org/10.1016/j.sbi.2014.04.002
30.
30.F. Nüske, B. Keller, G. Pérez-Hernández, and M. A. F. Noé, J. Chem. Theory Comput. 10, 1739 (2014).
http://dx.doi.org/10.1021/ct4009156
31.
31.G. R. Bowman, V. S. Pande, and F. Noé, An Introduction to Markov State Models and Their Application to Long Timescale Molecular Simulation (Springer Science and Business Media, Dordrecht, Netherlands, 2014).
32.
32.H. Wu and F. Noé, J. Chem. Phys. 142, 084104 (2015).
http://dx.doi.org/10.1063/1.4913214
33.
33.C. Schütte and M. Sarich, Eur. Phys. J.: Spec. Top. 224, 2445 (2015).
http://dx.doi.org/10.1140/epjst/e2015-02421-0
34.
34.F. Vitalini, F. Noé, and B. G. Keller, J. Chem. Theory Comput. 11, 3992 (2015).
http://dx.doi.org/10.1021/acs.jctc.5b00498
35.
35.J. D. Chodera, N. Singhal, V. S. Pande, K. A. Dill, and W. C. Swope, J. Chem. Phys. 126, 155101 (2007).
http://dx.doi.org/10.1063/1.2714538
36.
36.F. Noé, I. Horenko, C. Schüette, and J. C. Smith, J. Chem. Phys. 126 (2007).
http://dx.doi.org/10.1063/1.2714539
37.
37.J.-H. Prinz, H. Wu, M. Sarich, B. Keller, M. Senne, M. Held, J. D. Chodera, C. Schütte, and F. Noé, J. Chem. Phys. 134, 174105 (2011).
http://dx.doi.org/10.1063/1.3565032
38.
38.J. D. Chodera and V. S. Pande, Proc. Natl. Acad. Sci. U. S. A. 108, 12969 (2011).
http://dx.doi.org/10.1073/pnas.1109571108
39.
39.T. J. Lane, G. R. Bowman, K. Beauchamp, V. A. Voelz, and V. S. Pande, J. Am. Chem. Soc. 133, 18413 (2011).
http://dx.doi.org/10.1021/ja207470h
40.
40.G. R. Bowman, V. A. Voelz, and V. S. Pande, J. Am. Chem. Soc. 133, 664 (2011).
http://dx.doi.org/10.1021/ja106936n
41.
41.K. A. Beauchamp, D. L. Ensign, R. Das, and V. S. Pande, Proc. Natl. Acad. Sci. U. S. A. 108, 12734 (2011).
http://dx.doi.org/10.1073/pnas.1010880108
42.
42.M. Held, P. Metzner, J.-H. Prinz, and F. Noé, Biophys. J. 100, 701 (2011).
http://dx.doi.org/10.1016/j.bpj.2010.12.3699
43.
43.I. Buch, T. Giorgino, and G. De Fabritiis, Proc. Natl. Acad. Sci. U. S. A. 108, 10184 (2011).
http://dx.doi.org/10.1073/pnas.1103547108
44.
44.G. R. Bowman and P. L. Geissler, Proc. Natl. Acad. Sci. U. S. A. 109, 11681 (2012).
http://dx.doi.org/10.1073/pnas.1209309109
45.
45.N. Plattner and F. Noé, Nat. Commun. 6, 7653 (2015).
http://dx.doi.org/10.1038/ncomms8653
46.
46.F. Vitalini, A. S. J. S. Mey, F. Noé, and B. G. Keller, J. Chem. Phys. 142, 84101 (2015).
http://dx.doi.org/10.1063/1.4909549
47.
47.C. Peter and K. Kremer, Soft Matter 5, 4357 (2009).
http://dx.doi.org/10.1039/b912027k
48.
48.W. G. Noid, J. Chem. Phys. 139, 090901 (2013).
http://dx.doi.org/10.1063/1.4818908
49.
49.F. Noé, J. Chem. Phys. 28, 244103 (2008).
http://dx.doi.org/10.1063/1.2916718
50.
50.R. Horst and P. M. Pardalos, Handbook of Global Optimization (Springer Science and Business Media, Dordrecht, Netherlands, 1995).
51.
51.See supplementary material at http://dx.doi.org/10.1063/1.4941455 for further technical details of the molecular simulations as well as Markov state model methodology and calculations.[Supplementary Material]
52.
52.P. Metzner, F. Noé, and C. Schütte, Phys. Rev. E 80, 021106 (2009).
http://dx.doi.org/10.1103/physreve.80.021106
53.
53.P. Metzner, M. Weber, and C. Schütte, Phys. Rev. E 82, 1 (2010).
http://dx.doi.org/10.1103/PhysRevE.82.031114
54.
54.F. Noé et al., Pyemma, 2015, https://github.com/markovmodel/PyEMMA/.
55.
55.M. Senne, B. Trendelkamp-Schroer, A. S. J. S. Mey, C. Schütte, and F. Noé, J. Chem. Theory Comput. 8, 2223 (2012).
http://dx.doi.org/10.1021/ct300274u
56.
56.W. Humphrey, A. Dalke, and K. Schulten, J. Mol. Graphics 14, 33 (1996).
http://dx.doi.org/10.1016/0263-7855(96)00018-5
57.
57.W. L. Jorgensen, D. S. Maxwell, and J. Tirado-Rives, J. Am. Chem. Soc. 118, 11225 (1996).
http://dx.doi.org/10.1021/ja9621760
58.
58.H. Berendsen, J. Grigera, and T. Straatsma, J. Phys. Chem. 91, 6269 (1987).
http://dx.doi.org/10.1021/j100308a038
59.
59.J. F. Rudzinski and W. G. Noid, J. Chem. Theory Comput. 11, 1278 (2015).
http://dx.doi.org/10.1021/ct5009922
60.
60.P. Deuflhard and M. Weber, Linear Algebra Appl. 398, 161 (2005).
http://dx.doi.org/10.1016/j.laa.2004.10.026
61.
61.T. Bereau and M. Deserno, J. Chem. Phys. 130, 235106 (2009).
http://dx.doi.org/10.1063/1.3152842
http://aip.metastore.ingenta.com/content/aip/journal/jcp/144/5/10.1063/1.4941455
Loading
/content/aip/journal/jcp/144/5/10.1063/1.4941455
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/144/5/10.1063/1.4941455
2016-02-05
2016-09-29

Abstract

Molecular simulations can provide microscopic insight into the physical and chemical driving forces of complex molecular processes. Despite continued advancement of simulation methodology, model errors may lead to inconsistencies between simulated and reference (e.g., from experiments or higher-level simulations) observables. To bound the microscopic information generated by computer simulations within reference measurements, we propose a method that reweights the microscopic transitions of the system to improve consistency with a set of coarse kinetic observables. The method employs the well-developed Markov state modeling framework to efficiently link microscopic dynamics with long-time scale constraints, thereby consistently addressing a wide range of time scales. To emphasize the robustness of the method, we consider two distinct coarse-grained models with significant kinetic inconsistencies. When applied to the simulated conformational dynamics of small peptides, the reweighting procedure systematically improves the time scale separation of the slowest processes. Additionally, constraining the forward and backward rates between metastable states leads to slight improvement of their relative stabilities and, thus, refined equilibrium properties of the resulting model. Finally, we find that difficulties in simultaneously describing both the simulated data and the provided constraints can help identify specific limitations of the underlying simulation approach.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/144/5/1.4941455.html;jsessionid=gWi0Ccg5OVDuuc6DPv8C2Pce.x-aip-live-03?itemId=/content/aip/journal/jcp/144/5/10.1063/1.4941455&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/144/5/10.1063/1.4941455&pageURL=http://scitation.aip.org/content/aip/journal/jcp/144/5/10.1063/1.4941455'
Right1,Right2,Right3,