Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/144/6/10.1063/1.4941278
1.
1.Y. Marcus, Solvent Mixtures: Properties and Selective Solvation (CRC Press, 2002).
2.
2.A. Ben-Naim, Molecular Theory of Solutions (Oxford University Press, 2006).
3.
3.L. Pauling, R. B. Corey, and H. R. Branson, Proc. Natl. Acad. Sci. U. S. A. 37, 205 (1951).
http://dx.doi.org/10.1073/pnas.37.4.205
4.
4.I. D. Kuntz, Jr. and W. Kauzmann, Adv. Protein Chem. 28, 239 (1974).
http://dx.doi.org/10.1016/S0065-3233(08)60232-6
5.
5.D. A. Clarke, F. S. Philips, S. S. Sternberg, R. K. Barclay, and C. C. Stock, Proc. Soc. Exp. Biol. Med. 84, 203 (1953).
http://dx.doi.org/10.3181/00379727-84-20590
6.
6.A. Furst, W. C. Cutting, and H. Gross, Cancer Res. 15, 294 (1955).
7.
7.E. Pagnotta, N. Calonghi, C. Boga, and L. Masotti, Anti-Cancer Drugs 17, 521 (2006).
http://dx.doi.org/10.1097/00001813-200606000-00005
8.
8.S. J. Bass, W. I. Nathan, R. M. Meighan, and R. H. Cole, J. Phys. Chem. 68, 509 (1964).
http://dx.doi.org/10.1021/j100785a011
9.
9.R. A. Russell and H. W. Thompson, Spectrochim. Acta 8, 138 (1956).
http://dx.doi.org/10.1016/0371-1951(56)80049-0
10.
10.S. Shin, A. Kurawaki, Y. Hamada, K. Shinya, K. Ohno, A. Tohara, and M. Sato, J. Mol. Struct. 791, 30 (2006).
http://dx.doi.org/10.1016/j.molstruc.2006.01.005
11.
11.A. Radzicka, L. Pedersen, and R. Wolfenden, Biochemistry 27, 4538 (1988).
http://dx.doi.org/10.1021/bi00412a047
12.
12.I. P. Gerothanassis, I. N. Demetropoulos, and C. Vakka, Biopolymers 36, 415 (1995).
http://dx.doi.org/10.1002/bip.360360405
13.
13.A. D. Headley and J. Nam, J. Mol. Struct.: THEOCHEM 589–590, 423 (2002).
http://dx.doi.org/10.1016/S0166-1280(02)00301-9
14.
14.A. García Martínez, E. Teso Vilar, A. García Fraile, and P. Martínez-Ruiz, J. Phys. Chem. A 106, 4942 (2002).
http://dx.doi.org/10.1021/jp012891i
15.
15.T. Miyazawa, J. Mol. Spectrosc. 4, 155 (1960).
http://dx.doi.org/10.1016/0022-2852(60)90075-8
16.
16.M. Kitano and K. Kuchitsu, Bull. Chem. Soc. Jpn. 47, 631 (1974).
http://dx.doi.org/10.1246/bcsj.47.631
17.
17.Y. Sugawara, Y. Hamada, A. Y. Hirakawa, and M. Tsuboi, Chem. Phys. Lett. 67, 186 (1979).
http://dx.doi.org/10.1016/0009-2614(79)87134-1
18.
18.L. A. LaPlanche and M. T. Rogers, J. Am. Chem. Soc. 86, 337 (1964).
http://dx.doi.org/10.1021/ja01057a007
19.
19.M. J. Aroney, R. J. W. Le Fevre, and A. N. Singh, J. Chem. Soc. 3179 (1965).
http://dx.doi.org/10.1039/JR9650003179
20.
20.L. M. Jackman, in Dynamic Nuclear Magnetic Resonance Spectroscopy, edited by L. M. Cotton and F. A. Jackman (Academic Press, 1975), pp. 203252.
21.
21.H. Nakanishi and J. D. Roberts, Org. Magn. Reson. 15, 7 (1981).
http://dx.doi.org/10.1002/mrc.1270150103
22.
22.J. Neuefeind, M. D. Zeidler, and H. F. Poulsen, Mol. Phys. 87, 189 (1996).
http://dx.doi.org/10.1080/00268979650027720
23.
23.I. Suzuki, Bull. Chem. Soc. Jpn. 35, 540 (1962).
http://dx.doi.org/10.1246/bcsj.35.540
24.
24.P. R. Andrews, Biopolymers 10, 2253 (1971).
http://dx.doi.org/10.1002/bip.360101117
25.
25.Y. Sugawara, A. Y. Hirakawa, M. Tsuboi, S. Kato, and K. Morokuma, Chem. Phys. 62, 339 (1981).
http://dx.doi.org/10.1016/0301-0104(81)85129-4
26.
26.S. Ataka, H. Takeuchi, and M. Tasumi, J. Mol. Struct. 113, 147 (1984).
http://dx.doi.org/10.1016/0022-2860(84)80140-4
27.
27.H. Ohtaki, S. Itoh, and B. M. Rode, Bull. Chem. Soc. Jpn. 59, 271 (1986).
http://dx.doi.org/10.1246/bcsj.59.271
28.
28.W. L. Jorgensen and J. Gao, J. Am. Chem. Soc. 110, 4212 (1988).
http://dx.doi.org/10.1021/ja00221a020
29.
29.A. C. Fantoni and W. Caminati, J. Chem. Soc., Faraday Trans. 92, 343 (1996).
http://dx.doi.org/10.1039/ft9969200343
30.
30.A. García Martínez, E. Teso Vilar, A. García Fraile, and P. Martínez-Ruiz, J. Chem. Phys. 124, 234305 (2006).
http://dx.doi.org/10.1063/1.2204910
31.
31.M. Yoshida and H. Torii, Comput. Lett. 3, 449 (2007).
http://dx.doi.org/10.1163/157404007782913110
32.
32.Y. J. Chang and E. W. Castner, J. Chem. Phys. 99, 113 (1993).
http://dx.doi.org/10.1063/1.465790
33.
33.F. Hammami, S. Nasr, M. Oumezzine, and R. Cortés, Biomol. Eng. 19, 201 (2002).
http://dx.doi.org/10.1016/S1389-0344(02)00040-0
34.
34.F. Hammami, M. Bahri, S. Nasr, N. Jaidane, M. Oummezzine, and R. Cortes, J. Chem. Phys. 119, 4419 (2003).
http://dx.doi.org/10.1063/1.1592513
35.
35.T. S. Thakur, M. T. Kirchner, D. Blaser, R. Boese, and G. R. Desiraju, Phys. Chem. Chem. Phys. 13, 14076 (2011).
http://dx.doi.org/10.1039/c0cp02236e
36.
36.J. Neuefeind, P. Chieux, and M. Zeidler, Mol. Phys. 76, 143 (1992).
http://dx.doi.org/10.1080/00268979200101221
37.
37.P. C. Schoester, M. D. Zeidler, T. Radnai, and P. A. Bopp, Z. Naturforsch. A 50, 38 (1995).
http://dx.doi.org/10.1515/zna-1995-0106
38.
38.R. Ludwig, F. Weinhold, and T. C. Farrar, J. Chem. Phys. 107, 499 (1997).
http://dx.doi.org/10.1063/1.474411
39.
39.J. M. M. Cordeiro, Int. J. Quantum Chem. 65, 709 (1997).
http://dx.doi.org/10.1002/(SICI)1097-461X(1997)65:5<709::AID-QUA37>3.0.CO;2-U
40.
40.J. M. M. Cordeiro and A. K. Soper, J. Phys. Chem. B 113, 6819 (2009).
http://dx.doi.org/10.1021/jp902053y
41.
41.H. Torii and M. Tasumi, Int. J. Quantum Chem. 70, 241 (1998).
http://dx.doi.org/10.1002/(SICI)1097-461X(1998)70:2<241::AID-QUA1>3.0.CO;2-U
42.
42.H. Torii and M. Tasumi, J. Phys. Chem. A 104, 4174 (2000).
http://dx.doi.org/10.1021/jp992616k
43.
43.F. Hammami, S. Nasr, M.-C. Bellissent-Funel, and M. Oumezzine, J. Phys. Chem. B 109, 16169 (2005).
http://dx.doi.org/10.1021/jp0502095
44.
44.C. de Visser, P. Pel, and G. Somsen, J. Solution Chem. 6, 571 (1977).
http://dx.doi.org/10.1007/BF00655371
45.
45.H. Weingärtner, M. Holz, and H. Hertz, J. Solution Chem. 7, 689 (1978).
http://dx.doi.org/10.1007/BF00652019
46.
46.M. N. Islam, M. A. Ali, M. M. Islam, and M. K. Nahar, Phys. Chem. Liq. 41, 271 (2003).
http://dx.doi.org/10.1080/0031910031000097088
47.
47.A. M. Zaichikov and M. A. Krest’yaninov, Russ. J. Chem. Phys. 80, 1249 (2006).
http://dx.doi.org/10.1134/S0036024406080139
48.
48.A. M. Zaichikov and M. A. Krest’yaninov, J. Struct. Chem. 49, 285 (2008).
http://dx.doi.org/10.1007/s10947-008-0125-1
49.
49.Y. Marcus, J. Chem. Soc., Faraday Trans. 86, 2215 (1990).
http://dx.doi.org/10.1039/ft9908602215
50.
50.J. Zielkiewicz, J. Chem. Soc., Faraday Trans. 94, 1713 (1998).
http://dx.doi.org/10.1039/a800943k
51.
51.Y. Marcus, Monatsh. Chem. 132, 1387 (2001).
http://dx.doi.org/10.1007/s007060170023
52.
52.A. Chebaane, F. Hammami, M. Bahri, and S. Nasr, J. Mol. Liq. 165, 133 (2012).
http://dx.doi.org/10.1016/j.molliq.2011.10.021
53.
53.F. Hammami, A. Chebaane, M. Bahri, and S. Nasr, Eur. Phys. J. E 36, 129 (2013).
http://dx.doi.org/10.1140/epje/i2013-13129-5
54.
54.A. Chebaane, F. Hammami, S. Nasr, M. Bahri, and M.-C. Bellissent-Funel, Eur. Phys. J. E 38, 5 (2015).
http://dx.doi.org/10.1140/epje/i2015-15005-8
55.
55.F. Weinhold, J. Chem. Phys. 109, 367 (1998).
http://dx.doi.org/10.1063/1.476573
56.
56.F. Weinhold, J. Chem. Phys. 109, 373 (1998).
http://dx.doi.org/10.1063/1.476574
57.
57.R. Ludwig and F. Weinhold, J. Chem. Phys. 110, 508 (1999).
http://dx.doi.org/10.1063/1.478136
58.
58.R. Ludwig and F. Weinhold, Phys. Chem. Chem. Phys. 2, 1613 (2000).
http://dx.doi.org/10.1039/a908690k
59.
59.R. Ludwig, Phys. Chem. Chem. Phys. 4, 5481 (2002).
http://dx.doi.org/10.1039/b207000f
60.
60.R. Ludwig and F. Weinhold, Z. Phys. Chem. 216, 659 (2002).
http://dx.doi.org/10.1524/zpch.2002.216.5.659
61.
61.P. Borowski, J. Jaroniec, T. Janowski, and K. Woliński, Mol. Phys. 101, 1413 (2003).
http://dx.doi.org/10.1080/0026897031000085083
62.
62.B. Kirchner, J. Chem. Phys. 123, 204116 (2005).
http://dx.doi.org/10.1063/1.2126977
63.
63.R. Ludwig, ChemPhysChem 8, 938 (2007).
http://dx.doi.org/10.1002/cphc.200700067
64.
64.C. Spickermann, S. B. C. Lehmann, and B. Kirchner, J. Chem. Phys. 128, 244506 (2008).
http://dx.doi.org/10.1063/1.2937894
65.
65.S. B. C. Lehmann, C. Spickermann, and B. Kirchner, J. Chem. Theory Comput. 5, 1640 (2009).
http://dx.doi.org/10.1021/ct800310a
66.
66.S. B. C. Lehmann, C. Spickermann, and B. Kirchner, J. Chem. Theory Comput. 5, 1650 (2009).
http://dx.doi.org/10.1021/ct900189v
67.
67.A. Lenz and L. Ojamäe, J. Chem. Phys. 131, 134302 (2009).
http://dx.doi.org/10.1063/1.3239474
68.
68.F. Weinhold, J. Phys. Chem. B 118, 7792 (2014).
http://dx.doi.org/10.1021/jp411475s
69.
69.R. Ludwig, F. Weinhold, and T. C. Farrar, J. Phys. Chem. A 101, 8861 (1997).
http://dx.doi.org/10.1021/jp971360k
70.
70.M. A. Wendt, F. Weinhold, and T. C. Farrar, J. Chem. Phys. 109, 5945 (1998).
http://dx.doi.org/10.1063/1.477218
71.
71.R. Ludwig, F. Weinhold, and T. C. Farrar, Ber. Bunsen-Ges. 102, 197 (1998).
http://dx.doi.org/10.1002/bbpc.19981020210
72.
72.R. Ludwig, F. Weinhold, and T. C. Farrar, Ber. Bunsen-Ges. 102, 205 (1998).
http://dx.doi.org/10.1002/bbpc.19981020211
73.
73.R. Ludwig, O. Reis, R. Winter, F. Weinhold, and T. C. Farrar, J. Phys. Chem. B 102, 9312 (1998).
http://dx.doi.org/10.1021/jp971575u
74.
74.R. Ludwig, F. Weinhold, and T. C. Farrar, Mol. Phys. 97, 465 (1999).
http://dx.doi.org/10.1080/00268979909482847
75.
75.R. Ludwig, F. Weinhold, and T. C. Farrar, Mol. Phys. 97, 479 (1999).
http://dx.doi.org/10.1080/00268979909482848
76.
76.M. Huelsekopf and R. Ludwig, J. Mol. Liq. 85, 105 (2000).
http://dx.doi.org/10.1016/S0167-7322(99)00168-3
77.
77.M. Huelsekopf and R. Ludwig, Magn. Reson. Chem. 39, S127 (2001).
http://dx.doi.org/10.1002/mrc.912
78.
78.M. Huelsekopf and R. Ludwig, J. Mol. Liq. 98–99, 163 (2002).
http://dx.doi.org/10.1016/S0167-7322(01)00305-1
79.
79.R. Ludwig, J. Behler, B. Klink, and F. Weinhold, Angew. Chem., Int. Ed. 41, 3199 (2002).
http://dx.doi.org/10.1002/1521-3773(20020902)41:17<3199::AID-ANIE3199>3.0.CO;2-9
80.
80.M. J. Hansen, M. A. Wendt, and F. Weinhold, Mol. Phys. 101, 1147 (2003).
http://dx.doi.org/10.1080/0026897031000075679
81.
81.R. Ludwig, ChemPhysChem 6, 1369 (2005).
http://dx.doi.org/10.1002/cphc.200400663
82.
82.R. Ludwig, ChemPhysChem 6, 1376 (2005).
http://dx.doi.org/10.1002/cphc.200400664
83.
83.G. Matisz, W. M. F. Fabian, A.-M. Kelterer, and S. Kunsági-Máté, J. Mol. Struct.: THEOCHEM 956, 103 (2010).
http://dx.doi.org/10.1016/j.theochem.2010.07.003
84.
84.E. Perlt, J. Friedrich, M. von Domaros, and B. Kirchner, ChemPhysChem 12, 3474 (2011).
http://dx.doi.org/10.1002/cphc.201100592
85.
85.C. Spickermann, E. Perlt, M. von Domaros, M. Roatsch, J. Friedrich, and B. Kirchner, J. Chem. Theory Comput. 7, 868 (2011).
http://dx.doi.org/10.1021/ct200074c
86.
86.G. Matisz, A.-M. Kelterer, W. M. F. Fabian, and S. Kunsági-Máté, J. Phys. Chem. B 115, 3936 (2011).
http://dx.doi.org/10.1021/jp109950h
87.
87.M. Brüssel, E. Perlt, S. B. C. Lehmann, M. von Domaros, and B. Kirchner, J. Chem. Phys. 135, 194113 (2011).
http://dx.doi.org/10.1063/1.3662071
88.
88.G. Matisz, A.-M. Kelterer, W. M. F. Fabian, and S. Kunsagi-Mate, Phys. Chem. Chem. Phys. 17, 8467 (2015).
http://dx.doi.org/10.1039/C4CP05836D
89.
89.B. Kirchner, C. Spickermann, S. B. C. Lehmann, E. Perlt, J. Langner, M. von Domaros, P. Reuther, F. Uhlig, M. Kohagen, and M. Brüssel, Comput. Phys. Commun. 182, 1428 (2011).
http://dx.doi.org/10.1016/j.cpc.2011.03.011
90.
90.B. Kirchner, F. Weinhold, J. Friedrich, E. Perlt, and S. B. C. Lehmann, in Many-Electron Approaches in Physics, Chemistry and Mathematics, Mathematical Physics Studies, edited by V. Bach and L. Delle Site (Springer International Publishing, 2014), pp. 7796.
91.
91.D. A. McQuarrie, Statistical Mechanics (University Science Books, 2000).
92.
92.M. Brüssel, E. Perlt, M. von Domaros, M. Brehm, and B. Kirchner, J. Chem. Phys. 137, 164107 (2012).
http://dx.doi.org/10.1063/1.4759154
93.
93.Turbomole version 6.2, Turbomole GmbH, 2010, http://www.turbomole.com.
94.
94.F. Weigend and R. Ahlrichs, Phys. Chem. Chem. Phys. 7, 3297 (2005).
http://dx.doi.org/10.1039/b508541a
95.
95.C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988).
http://dx.doi.org/10.1103/PhysRevB.37.785
96.
96.A. D. Becke, J. Chem. Phys. 98, 5648 (1993).
http://dx.doi.org/10.1063/1.464913
97.
97.S. Grimme, J. Comput. Chem. 27, 1787 (2006).
http://dx.doi.org/10.1002/jcc.20495
98.
98.F. Weigend, Phys. Chem. Chem. Phys. 4, 4285 (2002).
http://dx.doi.org/10.1039/b204199p
99.
99.F. Weigend, Phys. Chem. Chem. Phys. 8, 1057 (2006).
http://dx.doi.org/10.1039/b515623h
100.
100.S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, J. Chem. Phys. 132, 154104 (2010).
http://dx.doi.org/10.1063/1.3382344
101.
101.S. F. Boys and F. Bernardi, Mol. Phys. 19, 553 (1970).
http://dx.doi.org/10.1080/00268977000101561
102.
102.B. H. Wells and S. Wilson, Mol. Phys. 50, 1295 (1983).
http://dx.doi.org/10.1080/00268978300103051
103.
103.Turbomole development version, Turbomole GmbH, 2009, http://www.turbomole.com.
104.
104.D. P. Tew, W. Klopper, C. Neiss, and C. Hättig, Phys. Chem. Chem. Phys. 9, 1921 (2007).
http://dx.doi.org/10.1039/b617230j
105.
105.R. A. Bachorz, F. A. Bischoff, A. Glöß, C. Hättig, S. Höfener, W. Klopper, and D. P. Tew, J. Comput. Chem. 32, 2492 (2011).
http://dx.doi.org/10.1002/jcc.21825
106.
106.C. Hättig, D. P. Tew, and A. Köhn, J. Chem. Phys. 132, 231102 (2010).
http://dx.doi.org/10.1063/1.3442368
107.
107.K. A. Peterson, T. B. Adler, and H.-J. Werner, J. Chem. Phys. 128, 084102 (2008).
http://dx.doi.org/10.1063/1.2831537
108.
108.K. E. Yousaf and K. Peterson, J. Chem. Phys. 129, 184108 (2008).
http://dx.doi.org/10.1063/1.3009271
109.
109.G. Knizia and H.-J. Werner, J. Chem. Phys. 128, 154103 (2008).
http://dx.doi.org/10.1063/1.2889388
110.
110.G. Knizia, T. B. Adler, and H.-J. Werner, J. Chem. Phys. 130, 054104 (2009).
http://dx.doi.org/10.1063/1.3054300
111.
111.S. Ten-no, Chem. Phys. Lett. 398, 56 (2004).
http://dx.doi.org/10.1016/j.cplett.2004.09.041
112.
112.D. P. Tew and W. Klopper, J. Chem. Phys. 123, 074101 (2005).
http://dx.doi.org/10.1063/1.1999632
113.
113.H. Stoll, Chem. Phys. Lett. 191, 548 (1992).
http://dx.doi.org/10.1016/0009-2614(92)85587-Z
114.
114.H. Stoll, Phys. Rev. B 46, 6700 (1992).
http://dx.doi.org/10.1103/PhysRevB.46.6700
115.
115.H. Stoll, J. Chem. Phys. 97, 8449 (1992).
http://dx.doi.org/10.1063/1.463415
116.
116.J. Friedrich and M. Dolg, J. Chem. Phys. 129, 244105 (2008).
http://dx.doi.org/10.1063/1.3043797
117.
117.J. Friedrich, K. Walczak, and M. Dolg, Chem. Phys. 356, 47 (2009).
http://dx.doi.org/10.1016/j.chemphys.2008.10.030
118.
118.J. Friedrich and M. Dolg, J. Chem. Theory Comput. 5, 287 (2009).
http://dx.doi.org/10.1021/ct800355e
119.
119.J. Friedrich, M. Hanrath, and M. Dolg, J. Phys. Chem. A 111, 9830 (2007).
http://dx.doi.org/10.1021/jp072256y
120.
120.J. Friedrich, M. Hanrath, and M. Dolg, Z. Phys. Chem. 224, 513 (2010).
http://dx.doi.org/10.1524/zpch.2010.6121
121.
121.J. Friedrich and K. Walczak, J. Chem. Theory Comput. 9, 408 (2013).
http://dx.doi.org/10.1021/ct300938w
122.
122.J. Friedrich, J. Chem. Theory Comput. 8, 1597 (2012).
http://dx.doi.org/10.1021/ct200686h
123.
123.J. Friedrich and T. Anacker, Mol. Phys. 111, 1161 (2013).
http://dx.doi.org/10.1080/00268976.2013.781693
124.
124.J. Friedrich, E. Perlt, M. Roatsch, C. Spickermann, and B. Kirchner, J. Chem. Theory Comput. 7, 843 (2011).
http://dx.doi.org/10.1021/ct100131c
125.
125.J. Friedrich and J. Hänchen, J. Chem. Theory Comput. 9, 5381 (2013).
http://dx.doi.org/10.1021/ct4008074
126.
126.A. Schäfer, H. Horn, and R. Ahlrichs, J. Chem. Phys. 97, 2571 (1992).
http://dx.doi.org/10.1063/1.463096
127.
127.J. Friedrich, M. Hanrath, and M. Dolg, Chem. Phys. 338, 33 (2007).
http://dx.doi.org/10.1016/j.chemphys.2007.07.021
128.
128.S. Jähnigen, M. von Domaros, J. Friedrich, and B. Kirchner, “Clusters of N-methylformamide and water from coupled cluster calculations” (unpublished).
129.
129.J. L. Pascual-ahuir, E. Silla, and I. Tuñon, J. Comput. Chem. 15, 1127 (1994).
http://dx.doi.org/10.1002/jcc.540151009
130.
130.A. Bondi, J. Phys. Chem. 68, 441 (1964).
http://dx.doi.org/10.1021/j100785a001
131.
131.Y. Wang, M. Guo, S. Wei, S. Yin, Y. Wang, Z. Song, and M. R. Hoffmann, Comput. Theor. Chem. 1049, 28 (2014).
http://dx.doi.org/10.1016/j.comptc.2014.09.006
132.
132.See supplementary material at http://dx.doi.org/10.1063/1.4941278 for further population-temperature profiles.[Supplementary Material]
133.
133.N. M. Murthy, K. V. Sivakumar, R. E., and S. V. Subramanyam, Acustica 48, 341 (1981).
http://aip.metastore.ingenta.com/content/aip/journal/jcp/144/6/10.1063/1.4941278
Loading
/content/aip/journal/jcp/144/6/10.1063/1.4941278
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/144/6/10.1063/1.4941278
2016-02-08
2016-12-06

Abstract

The established quantum cluster equilibrium (QCE) approach is refined and applied to -methylformamide (NMF) and its aqueous solution. The QCE method is split into two iterative cycles: one which converges to the liquid phase solution of the QCE equations and another which yields the gas phase. By comparing Gibbs energies, the thermodynamically stable phase at a given temperature and pressure is then chosen. The new methodology avoids metastable solutions and allows a different treatment of the mean-field interactions within the gas and liquid phases. These changes are of crucial importance for the treatment of binary mixtures. For the first time in a QCE study, the --isomerism of a species (NMF) is explicitly considered. Cluster geometries and frequencies are calculated using density functional theory(DFT) and complementary coupled cluster single point energies are used to benchmark the DFT results. Independent of the selected quantum-chemical method, a large set of clusters is required for an accurate thermodynamic description of the binary mixture. The liquid phase of neat NMF is found to be dominated by the cyclic -NMF pentamer, which can be interpreted as a linear trimer that is stabilized by explicit solvation of two further NMF molecules. This cluster reflects the known hydrogen bond network preferences of neat NMF.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/144/6/1.4941278.html;jsessionid=E6sJnGgBXNhe9bzRQrNg9UyY.x-aip-live-02?itemId=/content/aip/journal/jcp/144/6/10.1063/1.4941278&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/144/6/10.1063/1.4941278&pageURL=http://scitation.aip.org/content/aip/journal/jcp/144/6/10.1063/1.4941278'
Right1,Right2,Right3,