Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.K. M. Emmerson et al., Atmos. Chem. Phys. 7, 167 (2007).
2.K. M. Emmerson and N. Carslaw, Atmos. Environ. 43, 3220 (2009).
3.R. M. Harrison et al., Sci. Total Environ. 360, 5 (2006).
4.D. Johnson and G. Marston, Chem. Soc. Rev. 37, 699 (2008).
5.N. M. Donahue, G. T. Drozd, S. A. Epstein, A. A. Presto, and J. H. Kroll, Phys. Chem. Chem. Phys. 13, 10848 (2011).
6.A. Novelli, L. Vereecken, J. Lelieveld, and H. Harder, Phys. Chem. Chem. Phys. 16, 19941 (2014).
7.H.-L. Huang, W. Chao, and J. J.-M. Lin, Proc. Natl. Acad. Sci. U. S. A. 112, 10857 (2015).
8.D. L. Osborn and C. A. Taatjes, Int. Rev. Phys. Chem. 34, 309 (2015).
9.T. L. Nguyen, H. Lee, D. A. Matthews, M. C. McCarthy, and J. F. Stanton, J. Phys. Chem. A 119, 5524 (2015).
10.O. Welz, J. D. Savee, D. L. Osborn, S. S. Vasu, C. J. Percival, D. E. Shallcross, and C. A. Taatjes, Science 335, 204 (2012).
11.C. A. Taatjes et al., Science 340, 177 (2013).
12.J. M. Beames, F. Liu, L. Lu, and M. I. Lester, J. Am. Chem. Soc. 134, 20045 (2012).
13.J. M. Beames, F. Liu, L. Lu, and M. I. Lester, J. Chem. Phys. 138, 244307 (2013).
14.F. Liu, J. M. Beames, A. M. Green, and M. I. Lester, J. Phys. Chem. A 118, 2298 (2014).
15.F. Liu, J. M. Beames, A. S. Petit, A. B. McCoy, and M. I. Lester, Science 345, 1596 (2014).
16.F. Liu, J. M. Beames, and M. I. Lester, J. Chem. Phys. 141, 234312 (2014).
17.K. T. Kuwata, M. R. Hermes, M. J. Carlson, and C. K. Zogg, J. Phys. Chem. A 114, 9192 (2010).
18.See supplementary material at for further details and discussion about methods and results for experiment, RRKM calculation, and vibrational mode analysis.[Supplementary Material]
19.T. H. Dunning, J. Chem. Phys. 90, 1007 (1989).
20.G. Knizia, T. B. Adler, and H.-J. Werner, J. Chem. Phys. 130, 054104 (2009).
21.K. A. Peterson, T. B. Adler, and H.-J. Werner, J. Chem. Phys. 128, 084102 (2008).
22.D. E. Woon and T. H. Dunning, J. Chem. Phys. 103, 4572 (1995).
23.A. Karton, S. Daon, and J. M. L. Martin, Chem. Phys. Lett. 510, 165 (2011).
24.M. E. Harding, J. Vázquez, B. Ruscic, A. K. Wilson, J. Gauss, and J. F. Stanton, J. Chem. Phys. 128, 114111 (2008).
25.T. Baer and W. L. Hase, Unimolecular Reaction Dynamics Theory and Experiments (Oxford University Press, New York, 1996).
26.J. A. Miller and S. J. Klippenstein, J. Phys. Chem. A 110, 10528 (2006).
27.O. Horie and G. K. Moortgat, Atmos. Environ., Part A 25, 1881 (1991).
28.J. D. Fenske, A. S. Hasson, A. W. Ho, and S. E. Paulson, J. Phys. Chem. A 104, 9921 (2000).
29.J. H. Kroll, S. R. Sahay, J. G. Anderson, K. L. Demerjian, and N. M. Donahue, J. Phys. Chem. A 105, 4446 (2001).
30.M. J. Newland, A. R. Rickard, M. S. Alam, L. Vereecken, A. Munoz, M. Rodenas, and W. J. Bloss, Phys. Chem. Chem. Phys. 17, 4076 (2015).
31.C. J. Percival et al., Faraday Discuss. 165, 45 (2013).
32.National Oceanic and Atmospheric Administration, National Aeronautics and Space Administration, U.S. Air Force, U.S. Standard Atmosphere 1976, U.S. Government Printing Office, Washington, DC, 1976.

Data & Media loading...


Article metrics loading...



In the atmosphere, a dominant loss process for carbonyl oxide intermediates produced from alkene ozonolysis is also an important source of hydroxyl radicals. The rate of appearance of OH radicals is revealed through direct time-domain measurements following vibrational activation of prototypical methyl-substituted Criegee intermediates under collision-free conditions. Complementary theoretical calculations predict the unimolecular decay rate for the Criegee intermediates in the vicinity of the barrier for 1,4 hydrogen transfer that leads to OH products. Both experiment and theory yield unimolecular decay rates of ca. 108 and 107 s−1 for -CHCHOO and (CH)COO, respectively, at energies near the barrier. Tunneling through the barrier, computed from high level electronic structuretheory and experimentally validated, makes a significant contribution to the decay rate. Extension to thermally averaged unimolecular decay of stabilized Criegee intermediates under atmospheric conditions yields rates that are six orders of magnitude slower than those evaluated directly in the barrier region.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd