Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/144/6/10.1063/1.4941768
1.
1.K. M. Emmerson et al., Atmos. Chem. Phys. 7, 167 (2007).
http://dx.doi.org/10.5194/acp-7-167-2007
2.
2.K. M. Emmerson and N. Carslaw, Atmos. Environ. 43, 3220 (2009).
http://dx.doi.org/10.1016/j.atmosenv.2009.03.042
3.
3.R. M. Harrison et al., Sci. Total Environ. 360, 5 (2006).
http://dx.doi.org/10.1016/j.scitotenv.2005.08.053
4.
4.D. Johnson and G. Marston, Chem. Soc. Rev. 37, 699 (2008).
http://dx.doi.org/10.1039/b704260b
5.
5.N. M. Donahue, G. T. Drozd, S. A. Epstein, A. A. Presto, and J. H. Kroll, Phys. Chem. Chem. Phys. 13, 10848 (2011).
http://dx.doi.org/10.1039/c0cp02564j
6.
6.A. Novelli, L. Vereecken, J. Lelieveld, and H. Harder, Phys. Chem. Chem. Phys. 16, 19941 (2014).
http://dx.doi.org/10.1039/C4CP02719A
7.
7.H.-L. Huang, W. Chao, and J. J.-M. Lin, Proc. Natl. Acad. Sci. U. S. A. 112, 10857 (2015).
http://dx.doi.org/10.1073/pnas.1513149112
8.
8.D. L. Osborn and C. A. Taatjes, Int. Rev. Phys. Chem. 34, 309 (2015).
http://dx.doi.org/10.1080/0144235X.2015.1055676
9.
9.T. L. Nguyen, H. Lee, D. A. Matthews, M. C. McCarthy, and J. F. Stanton, J. Phys. Chem. A 119, 5524 (2015).
http://dx.doi.org/10.1021/acs.jpca.5b02088
10.
10.O. Welz, J. D. Savee, D. L. Osborn, S. S. Vasu, C. J. Percival, D. E. Shallcross, and C. A. Taatjes, Science 335, 204 (2012).
http://dx.doi.org/10.1126/science.1213229
11.
11.C. A. Taatjes et al., Science 340, 177 (2013).
http://dx.doi.org/10.1126/science.1234689
12.
12.J. M. Beames, F. Liu, L. Lu, and M. I. Lester, J. Am. Chem. Soc. 134, 20045 (2012).
http://dx.doi.org/10.1021/ja310603j
13.
13.J. M. Beames, F. Liu, L. Lu, and M. I. Lester, J. Chem. Phys. 138, 244307 (2013).
http://dx.doi.org/10.1063/1.4810865
14.
14.F. Liu, J. M. Beames, A. M. Green, and M. I. Lester, J. Phys. Chem. A 118, 2298 (2014).
http://dx.doi.org/10.1021/jp412726z
15.
15.F. Liu, J. M. Beames, A. S. Petit, A. B. McCoy, and M. I. Lester, Science 345, 1596 (2014).
http://dx.doi.org/10.1126/science.1257158
16.
16.F. Liu, J. M. Beames, and M. I. Lester, J. Chem. Phys. 141, 234312 (2014).
http://dx.doi.org/10.1063/1.4903961
17.
17.K. T. Kuwata, M. R. Hermes, M. J. Carlson, and C. K. Zogg, J. Phys. Chem. A 114, 9192 (2010).
http://dx.doi.org/10.1021/jp105358v
18.
18.See supplementary material at http://dx.doi.org/10.1063/1.4941768 for further details and discussion about methods and results for experiment, RRKM calculation, and vibrational mode analysis.[Supplementary Material]
19.
19.T. H. Dunning, J. Chem. Phys. 90, 1007 (1989).
http://dx.doi.org/10.1063/1.456153
20.
20.G. Knizia, T. B. Adler, and H.-J. Werner, J. Chem. Phys. 130, 054104 (2009).
http://dx.doi.org/10.1063/1.3054300
21.
21.K. A. Peterson, T. B. Adler, and H.-J. Werner, J. Chem. Phys. 128, 084102 (2008).
http://dx.doi.org/10.1063/1.2831537
22.
22.D. E. Woon and T. H. Dunning, J. Chem. Phys. 103, 4572 (1995).
http://dx.doi.org/10.1063/1.470645
23.
23.A. Karton, S. Daon, and J. M. L. Martin, Chem. Phys. Lett. 510, 165 (2011).
http://dx.doi.org/10.1016/j.cplett.2011.05.007
24.
24.M. E. Harding, J. Vázquez, B. Ruscic, A. K. Wilson, J. Gauss, and J. F. Stanton, J. Chem. Phys. 128, 114111 (2008).
http://dx.doi.org/10.1063/1.2835612
25.
25.T. Baer and W. L. Hase, Unimolecular Reaction Dynamics Theory and Experiments (Oxford University Press, New York, 1996).
26.
26.J. A. Miller and S. J. Klippenstein, J. Phys. Chem. A 110, 10528 (2006).
http://dx.doi.org/10.1021/jp062693x
27.
27.O. Horie and G. K. Moortgat, Atmos. Environ., Part A 25, 1881 (1991).
http://dx.doi.org/10.1016/0960-1686(91)90271-8
28.
28.J. D. Fenske, A. S. Hasson, A. W. Ho, and S. E. Paulson, J. Phys. Chem. A 104, 9921 (2000).
http://dx.doi.org/10.1021/jp0016636
29.
29.J. H. Kroll, S. R. Sahay, J. G. Anderson, K. L. Demerjian, and N. M. Donahue, J. Phys. Chem. A 105, 4446 (2001).
http://dx.doi.org/10.1021/jp004136v
30.
30.M. J. Newland, A. R. Rickard, M. S. Alam, L. Vereecken, A. Munoz, M. Rodenas, and W. J. Bloss, Phys. Chem. Chem. Phys. 17, 4076 (2015).
http://dx.doi.org/10.1039/C4CP04186K
31.
31.C. J. Percival et al., Faraday Discuss. 165, 45 (2013).
http://dx.doi.org/10.1039/c3fd00048f
32.
32.National Oceanic and Atmospheric Administration, National Aeronautics and Space Administration, U.S. Air Force, U.S. Standard Atmosphere 1976, U.S. Government Printing Office, Washington, DC, 1976.
http://aip.metastore.ingenta.com/content/aip/journal/jcp/144/6/10.1063/1.4941768
Loading
/content/aip/journal/jcp/144/6/10.1063/1.4941768
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/144/6/10.1063/1.4941768
2016-02-10
2016-09-28

Abstract

In the atmosphere, a dominant loss process for carbonyl oxide intermediates produced from alkene ozonolysis is also an important source of hydroxyl radicals. The rate of appearance of OH radicals is revealed through direct time-domain measurements following vibrational activation of prototypical methyl-substituted Criegee intermediates under collision-free conditions. Complementary theoretical calculations predict the unimolecular decay rate for the Criegee intermediates in the vicinity of the barrier for 1,4 hydrogen transfer that leads to OH products. Both experiment and theory yield unimolecular decay rates of ca. 108 and 107 s−1 for -CHCHOO and (CH)COO, respectively, at energies near the barrier. Tunneling through the barrier, computed from high level electronic structuretheory and experimentally validated, makes a significant contribution to the decay rate. Extension to thermally averaged unimolecular decay of stabilized Criegee intermediates under atmospheric conditions yields rates that are six orders of magnitude slower than those evaluated directly in the barrier region.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/144/6/1.4941768.html;jsessionid=AAD0m7tHiNcWBu6LBfXWGrpU.x-aip-live-06?itemId=/content/aip/journal/jcp/144/6/10.1063/1.4941768&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/144/6/10.1063/1.4941768&pageURL=http://scitation.aip.org/content/aip/journal/jcp/144/6/10.1063/1.4941768'
Right1,Right2,Right3,