Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/144/8/10.1063/1.4941375
1.
1.W. L. Bragg, in The Development of X-ray Analysis, edited by D. C. Phillips and H. Lipson (Dover, New York, 1975).
2.
2.J. M. Thomas, Nature 364, 478 (1993).
http://dx.doi.org/10.1038/364478a0
3.
3.A. H. Zewail, in Les Prix Nobel, The Nobel Prizes 1999: Nobel Prizes, Presentations, Biographies, and Lectures, edited by T. Frängsmyr (Almqvist &Wiksell, Stockholm, 2000), p. 103.
4.
4.R. Henderson, Nature 415, 833 (2002).
http://dx.doi.org/10.1038/415833a
5.
5.R. Henderson and P. N. Unwin, Nature 257, 28 (1975).
http://dx.doi.org/10.1038/257028a0
6.
6.A. Amunts, A. Brown, X. Bai, J. L. Llácer, T. Hussain, P. Emsley, F. Long, G. Murshudov, S. H. W. Scheres, and V. Ramakrishnan, Science 343, 1485 (2014).
http://dx.doi.org/10.1126/science.1249410
7.
7.M. Liao, E. Cao, D. Julius, and Y. Cheng, Nature 504, 107 (2013).
http://dx.doi.org/10.1038/nature12822
8.
8.A. H. Zewail and J. M. Thomas, 4D Electron Microscopy: Imaging in Space and Time (Imperial College Press, London, 2009).
9.
9.M. Knoll and E. Ruska, Z. Phys. 78, 318 (1932).
http://dx.doi.org/10.1007/BF01342199
10.
10.M. P. Silverman, W. Strange, and J. C. H. Spence, Am. J. Phys. 63, 800 (1995).
http://dx.doi.org/10.1119/1.17804
11.
11.H. Lichte, Philos. Trans. R. Soc., A 360, 897 (2002), and references therein.
http://dx.doi.org/10.1098/rsta.2001.0973
12.
12.J. C. H. Spence, in Compendium of Quantum Physics: Concepts, Experiments, History and Philosophy, edited by D. Greenberger, K. Hentschel, and F. Weinert (Springer, Berlin, 2009), p. 188.
13.
13.A. Tonomura, The Quantum World Unveiled by Electron Waves (World Scientific, Singapore, 1998).
14.
14.A. Tonomura, Electron Holography, 2nd ed. (Springer, Berlin, 1999).
15.
15.P. D. Nellist, M. F. Chisholm, N. Dellby, O. L. Krivanek, M. F. Murfitt, Z. S. Szilagyi, A. R. Lupini, A. Borisevich, W. H. Sides, Jr., and S. J. Pennycook, Science 305, 1741 (2004).
http://dx.doi.org/10.1126/science.1100965
16.
16.A. Klug, Angew. Chem., Int. Ed. 22, 565 (1983), transcript of the Nobel lecture given in 1982.
http://dx.doi.org/10.1002/anie.198305653
17.
17.W. Kühlbrandt, Science 343, 1443 (2014).
http://dx.doi.org/10.1126/science.1251652
18.
18.M. Dantus, S. B. Kim, J. C. Williamson, and A. H. Zewail, J. Phys. Chem. 98, 2782 (1994).
http://dx.doi.org/10.1021/j100062a011
19.
19.J. C. Williamson, J. Cao, H. Ihee, H. Frey, and A. H. Zewail, Nature 386, 159 (1997).
http://dx.doi.org/10.1038/386159a0
20.
20.E. F. Garman, Science 343, 1102 (2014).
http://dx.doi.org/10.1126/science.1247829
21.
21.T. Ekeberg, M. Svenda, C. Abergel, F. R. N. C. Maia, V. Seltzer, J.-M. Claverie, M. Hantke, O. Jönsson, C. Nettelblad, G. van der Schot, M. Liang, D. P. DePonte, A. Barty, M. M. Seibert, B. Iwan, I. Andersson, N. D. Loh, A. V. Martin, H. Chapman, C. Bostedt, J. D. Bozek, K. R. Ferguson, J. Krzywinski, S. W. Epp, D. Rolles, A. Rudenko, R. Hartmann, N. Kimmel, and J. Hajdu, Phys. Rev. Lett. 114, 098102 (2015).
http://dx.doi.org/10.1103/PhysRevLett.114.098102
22.
22.J. Hajdu, Nature 417, 15 (2002).
http://dx.doi.org/10.1038/417015b
23.
23.V. Marx, Nat. Methods 11, 903 (2014).
http://dx.doi.org/10.1038/nmeth.3070
24.
24.J. Jiang, B. L. Pentelute, R. J. Collier, and Z. H. Zhou, Nature 521, 545 (2015).
http://dx.doi.org/10.1038/nature14247
25.
25.A. H. Zewail, 4D Visualization of Matter: Recent Collected Works (Imperial College Press, London, 2014).
26.
26.J. C. Williamson and A. H. Zewail, Proc. Natl. Acad. Sci. U. S. A. 88, 5021 (1991).
http://dx.doi.org/10.1073/pnas.88.11.5021
27.
27.H. Ihee, V. A. Lobastov, U. M. Gomez, B. M. Goodson, R. Srinivasan, C.-Y. Ruan, and A. H. Zewail, Science 291, 458 (2001).
http://dx.doi.org/10.1126/science.291.5503.458
28.
28.C.-Y. Ruan, F. Vigliotti, V. A. Lobastov, S. Chen, and A. H. Zewail, Proc. Natl. Acad. Sci. U. S. A. 101, 1123 (2004).
http://dx.doi.org/10.1073/pnas.0307302101
29.
29.R. Srinivasan, V. A. Lobastov, C.-Y. Ruan, and A. H. Zewail, Helv. Chim. Acta 86, 1763 (2003).
http://dx.doi.org/10.1002/hlca.200390147
30.
30.R. Srinivasan, J. S. Feenstra, S. T. Park, S. Xu, and A. H. Zewail, Science 307, 558 (2005).
http://dx.doi.org/10.1126/science.1107291
31.
31.D. Zhong, S. Ahmad, and A. H. Zewail, J. Am. Chem. Soc. 119, 5978 (1997).
http://dx.doi.org/10.1021/ja9710013
32.
32.H. Ihee, J. Kua, W. A. Goddard III, and A. H. Zewail, J. Phys. Chem. A 105, 3623 (2001).
http://dx.doi.org/10.1021/jp004035x
33.
33.A. Gahlmann, S. T. Park, and A. H. Zewail, J. Am. Chem. Soc. 131, 2806 (2009).
http://dx.doi.org/10.1021/ja808720j
34.
34.J. S. Baskin and A. H. Zewail, ChemPhysChem 6, 2261 (2005).
http://dx.doi.org/10.1002/cphc.200500331
35.
35.M. M. Lin, D. Shorokhov, and A. H. Zewail, Chem. Phys. Lett. 420, 1 (2006).
http://dx.doi.org/10.1016/j.cplett.2005.11.088
36.
36.J. Yang, J. Beck, C. J. Uiterwaal, and M. Centurion, Nat. Commun. 6, 8172 (2015).
http://dx.doi.org/10.1038/ncomms9172
37.
37.P. Reckenthaeler, M. Centurion, W. Fuß, S. A. Trushin, F. Krausz, and E. E. Fill, Phys. Rev. Lett. 102, 213001 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.213001
38.
38.J. S. Baskin and A. H. Zewail, J. Phys. Chem. A 105, 3680 (2001).
http://dx.doi.org/10.1021/jp004525p
39.
39.J. S. Baskin and A. H. Zewail, ChemPhysChem 7, 1562 (2006).
http://dx.doi.org/10.1002/cphc.200600133
40.
40.P. Baum, D.-S. Yang, and A. H. Zewail, Science 318, 788 (2007).
http://dx.doi.org/10.1126/science.1147724
41.
41.A. Cavalleri, Science 318, 755 (2007).
http://dx.doi.org/10.1126/science.1150672
42.
42.V. R. Morrison, R. P. Chatelain, K. L. Tiwari, A. Hendaoui, A. Bruhács, M. Chaker, and B. J. Siwick, Science 346, 445 (2014).
http://dx.doi.org/10.1126/science.1253779
43.
43.D. Wegkamp, M. Herzog, L. Xian, M. Gatti, P. Cudazzo, C. L. McGahan, R. E. Marvel, R. F. Haglund, Jr., A. Rubio, M. Wolf, and J. Stähler, Phys. Rev. Lett. 113, 216401 (2014).
http://dx.doi.org/10.1103/PhysRevLett.113.216401
44.
44.N. Gedik, D.-S. Yang, G. Logvenov, I. Bozovic, and A. H. Zewail, Science 316, 425 (2007).
http://dx.doi.org/10.1126/science.1138834
45.
45.F. Carbone, N. Gedik, J. Lorenzana, and A. H. Zewail, Adv. Condens. Matter Phys. 2010, 958618.
http://dx.doi.org/10.1155/2010/958618
46.
46.F. Carbone, D.-S. Yang, E. Giannini, and A. H. Zewail, Proc. Natl. Acad. Sci. U. S. A. 105, 20161 (2008).
http://dx.doi.org/10.1073/pnas.0811335106
47.
47.Y. L. Chen, W. S. Lee, and Z. X. Shen, Proc. Natl. Acad. Sci. U. S. A. 106, 963 (2009).
http://dx.doi.org/10.1073/pnas.0812286106
48.
48.A. H. Zewail, Science 328, 187 (2010).
http://dx.doi.org/10.1126/science.1166135
49.
49.M. T. Hassan, H. Liu, J. S. Baskin, and A. H. Zewail, Proc. Natl. Acad. Sci. U. S. A. 112, 12944 (2015).
http://dx.doi.org/10.1073/pnas.1517942112
50.
50.R. J. D. Miller, Science 343, 1108 (2014).
http://dx.doi.org/10.1126/science.1248488
51.
51.A. H. Zewail, “4D Imaging in an Ultrafast Electron Microscope,” U.S. patent 8,203,120 (19 June 2012).
52.
52.D. J. Flannigan and A. H. Zewail, Acc. Chem. Res. 45, 1828 (2012).
http://dx.doi.org/10.1021/ar3001684
53.
53.M. A. O’Keefe, Ultramicroscopy 108, 196 (2008).
http://dx.doi.org/10.1016/j.ultramic.2007.07.009
54.
54.P. L. Gai and E. D. Boyes, Electron Microscopy in Heterogeneous Catalysis: Series in Microscopy in Materials Science (IOP Publishing, Bristol, 2003).
55.
55.J. Park, H. Elmlund, P. Ercius, J. M. Yuk, D. T. Limmer, Q. Chen, K. Kim, S. H. Han, D. A. Weitz, A. Zettl, and A. P. Alivisatos, Science 349, 290 (2015); see also Ref. 97.
http://dx.doi.org/10.1126/science.aab1343
56.
56.B. Barwick, D. J. Flannigan, and A. H. Zewail, Nature 462, 902 (2009).
http://dx.doi.org/10.1038/nature08662
57.
57.A. Yurtsever and A. H. Zewail, Science 326, 708 (2009).
http://dx.doi.org/10.1126/science.1179314
58.
58.R. M. van der Veen, O.-H. Kwon, A. Tissot, A. Hauser, and A. H. Zewail, Nat. Chem. 5, 395 (2013).
http://dx.doi.org/10.1038/nchem.1622
59.
59.H. Liu, O.-H. Kwon, J. Tang, and A. H. Zewail, Nano Lett. 14, 946 (2014).
http://dx.doi.org/10.1021/nl404354g
60.
60.S. T. Park, M. M. Lin, and A. H. Zewail, New J. Phys. 12, 123028 (2010).
http://dx.doi.org/10.1088/1367-2630/12/12/123028
61.
61.A. Howie, Eur. Phys. J.: Appl. Phys. 54, 33502 (2011).
http://dx.doi.org/10.1051/epjap/2010100353
62.
62.A. Yurtsever, J. S. Baskin, and A. H. Zewail, Nano Lett. 12, 5027 (2012).
http://dx.doi.org/10.1021/nl302824f
63.
63.D. J. Flannigan, B. Barwick, and A. H. Zewail, Proc. Natl. Acad. Sci. U. S. A. 107, 9933 (2010).
http://dx.doi.org/10.1073/pnas.1005653107
64.
64.S. T. Park and A. H. Zewail, Chem. Phys. Lett. 521, 1 (2012).
http://dx.doi.org/10.1016/j.cplett.2011.11.031
65.
65.S. T. Park, A. Yurtsever, J. S. Baskin, and A. H. Zewail, Proc. Natl. Acad. Sci. U. S. A. 110, 9277 (2013).
http://dx.doi.org/10.1073/pnas.1306661110
66.
66.A. Yurtsever and A. H. Zewail, Nano Lett. 12, 3334 (2012).
http://dx.doi.org/10.1021/nl301643k
67.
67.A. W. P. Fitzpatrick, S. T. Park, and A. H. Zewail, Proc. Natl. Acad. Sci. U. S. A. 110, 10976 (2013).
http://dx.doi.org/10.1073/pnas.1309690110
68.
68.A. W. P. Fitzpatrick, U. J. Lorenz, G. M. Vanacore, and A. H. Zewail, J. Am. Chem. Soc. 135, 19123 (2013).
http://dx.doi.org/10.1021/ja4115055
69.
69.A. W. P. Fitzpatrick, G. M. Vanacore, and A. H. Zewail, Proc. Natl. Acad. Sci. U. S. A. 112, 3380 (2015).
http://dx.doi.org/10.1073/pnas.1502214112
70.
70.M. M. Lin, L. Meinhold, D. Shorokhov, and A. H. Zewail, Phys. Chem. Chem. Phys. 10, 4227 (2008).
http://dx.doi.org/10.1039/b804675c
71.
71.M. M. Lin, D. Shorokhov, and A. H. Zewail, Phys. Chem. Chem. Phys. 11, 10619 (2009).
http://dx.doi.org/10.1039/b910794k
72.
72.M. M. Lin, D. Shorokhov, and A. H. Zewail, J. Phys. Chem. A 113, 4075 (2009).
http://dx.doi.org/10.1021/jp8104425
73.
73.M. M. Lin, D. Shorokhov, and A. H. Zewail, J. Am. Chem. Soc. 133, 17072 (2011).
http://dx.doi.org/10.1021/ja207722k
74.
74.M. M. Lin, D. Shorokhov, and A. H. Zewail, Proc. Natl. Acad. Sci. U. S. A. 111, 14424 (2014).
http://dx.doi.org/10.1073/pnas.1416300111
75.
75.U. J. Lorenz and A. H. Zewail, Proc. Natl. Acad. Sci. U. S. A. 110, 2822 (2013).
http://dx.doi.org/10.1073/pnas.1300630110
76.
76.B. Barwick and A. H. Zewail, ACS Photon. 2, 1391 (2015).
http://dx.doi.org/10.1021/acsphotonics.5b00427
77.
77.D. J. Flannigan, V. A. Lobastov, and A. H. Zewail, Angew. Chem., Int. Ed. 46, 9206 (2007).
http://dx.doi.org/10.1002/anie.200704147
78.
78.J. S. Baskin, H. S. Park, and A. H. Zewail, Nano Lett. 11, 2183 (2011).
http://dx.doi.org/10.1021/nl200930a
79.
79.A. H. Zewail, Sci. Am. 303, 74 (2010).
http://dx.doi.org/10.1038/scientificamerican0810-74
80.
80.O.-H. Kwon, V. Ortalan, and A. H. Zewail, Proc. Natl. Acad. Sci. U. S. A. 108, 6026 (2011).
http://dx.doi.org/10.1073/pnas.1103109108
81.
81.M. M. Lin and A. H. Zewail, Ann. Phys. 524, 379 (2012).
http://dx.doi.org/10.1002/andp.201200501
82.
82.F. Krausz and M. Ivanov, Rev. Mod. Phys. 81, 163 (2009), and references therein.
http://dx.doi.org/10.1103/RevModPhys.81.163
83.
83.P. Baum and A. H. Zewail, Chem. Phys. 366, 2 (2009).
http://dx.doi.org/10.1016/j.chemphys.2009.07.013
84.
84.E. Fill, L. Veisz, A. Apolonski, and F. Krausz, New J. Phys. 8, 272 (2006).
http://dx.doi.org/10.1088/1367-2630/8/11/272
85.
85.G. F. Mancini, B. Mansart, S. Pagano, B. van der Geer, M. de Loos, and F. Carbone, Nucl. Instrum. Methods Phys. Res., Sect. A 691, 113 (2012).
http://dx.doi.org/10.1016/j.nima.2012.06.057
86.
86.P. Baum and A. H. Zewail, Proc. Natl. Acad. Sci. U. S. A. 104, 18409 (2007).
http://dx.doi.org/10.1073/pnas.0709019104
87.
87.S. A. Hilbert, C. Uiterwaal, B. Barwick, H. Batelaan, and A. H. Zewail, Proc. Natl. Acad. Sci. U. S. A. 106, 10558 (2009).
http://dx.doi.org/10.1073/pnas.0904912106
88.
88.H. Liu, J. S. Baskin, and A. H. Zewail, “Infrared PINEM developed by diffraction in 4D UEM,” Proc. Natl. Acad. Sci. U. S. A. (in press).
http://dx.doi.org/10.1073/pnas.1600317113
89.
89.Y. Zhu and H. Duerr, Phys. Today 68(4), 32 (2015).
http://dx.doi.org/10.1063/PT.3.2747
90.
90.J. M. Thomas, Angew. Chem., Int. Ed. 44, 5563 (2005).
http://dx.doi.org/10.1002/anie.200501466
91.
91.J. M. Thomas, in Physical Biology: From Atoms to Medicine, edited by A. H. Zewail (Imperial College Press, London, 2008), p. 51.
92.
92.J. M. Thomas, Angew. Chem., Int. Ed. 48, 8824 (2009).
http://dx.doi.org/10.1002/anie.200904052
93.
93.P. A. Midgley and J. M. Thomas, Angew. Chem., Int. Ed. 53, 8614 (2014).
http://dx.doi.org/10.1002/anie.201400625
94.
94.J. M. Thomas, Nature 351, 694 (1991).
http://dx.doi.org/10.1038/351694a0
95.
95.M. Chergui, inIn-situ Materials Characterization, Springer Series in Materials Science, edited by A. Ziegler, H. Graafsma, X. F. Zhang, and J. W. M. Frenken (Springer, Heidelberg, 2014), Vol. 193, p. 1.
96.
96.D. Shorokhov and A. H. Zewail, J. Am. Chem. Soc. 131, 17998 (2009).
http://dx.doi.org/10.1021/ja907432p
97.
97.N. de Jonge, D. B. Peckys, G. J. Kremers, and D. W. Piston, Proc. Natl. Acad. Sci. U. S. A. 106, 2159 (2009).
http://dx.doi.org/10.1073/pnas.0809567106
http://aip.metastore.ingenta.com/content/aip/journal/jcp/144/8/10.1063/1.4941375
Loading
/content/aip/journal/jcp/144/8/10.1063/1.4941375
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/144/8/10.1063/1.4941375
2016-02-23
2016-09-27

Abstract

In this Perspective, the evolutionary and revolutionary developments of ultrafast electron imaging are overviewed with focus on the “single-electron concept” for probing methodology. From the first electron microscope of Knoll and Ruska [Z. Phys. , 318 (1932)], constructed in the 1930s, to aberration-corrected instruments and on, to (4D UEM), the developments over eight decades have transformed humans’ scope of visualization. The changes in the length and time scales involved are unimaginable, beginning with the micrometer and second domains, and now reaching the space and time dimensions of atoms in matter. With these advances, it has become possible to follow the elementary structural dynamics as it unfolds in real time and to provide the means for visualizing materials behavior and biological functions. The aim is to understand emergent phenomena in complex systems, and 4D UEM is now central for the visualization of elementary processes involved, as illustrated here with examples from past achievements and future outlook.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/144/8/1.4941375.html;jsessionid=JDRKkUD44K8_yXW0qO8vTNP7.x-aip-live-06?itemId=/content/aip/journal/jcp/144/8/10.1063/1.4941375&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/144/8/10.1063/1.4941375&pageURL=http://scitation.aip.org/content/aip/journal/jcp/144/8/10.1063/1.4941375'
Right1,Right2,Right3,