Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/144/8/10.1063/1.4942026
1.
1.S. H. Koenig and R. D. Brown, Prog. Nucl. Magn. Reson. Spectrosc. 22, 487 (1990).
http://dx.doi.org/10.1016/0079-6565(90)80008-6
2.
2.S. H. Koenig and R. D. Brown, Magn. Reson. Med. 30, 685 (1993).
http://dx.doi.org/10.1002/mrm.1910300606
3.
3.J. P. Korb and R. G. Bryant, J. Chem. Phys. 115, 10964 (2001).
http://dx.doi.org/10.1063/1.1417509
4.
4.B. Halle, Magn. Reson. Med. 56, 60 (2006).
http://dx.doi.org/10.1002/mrm.20919
5.
5.E. P. Sunde and B. Halle, J. Am. Chem. Soc. 131, 18214 (2009).
http://dx.doi.org/10.1021/ja908144y
6.
6.F. V. Chávez and B. Halle, Magn. Reson. Med. 56, 73 (2006).
http://dx.doi.org/10.1002/mrm.20912
7.
7.A. Abragam, The Principles of Nuclear Magnetism (Clarendon Press, Oxford, 1961).
8.
8.R. Kubo, J. Math. Phys. 4, 174 (1963).
http://dx.doi.org/10.1063/1.1703941
9.
9.R. Kubo, in Advances in Chemical Physics, edited by K. E. Shuler (Wiley, New York, 1969), Vol. 15, p. 101.
http://dx.doi.org/10.1002/9780470143605.ch6
10.
10.B. Halle, Prog. Nucl. Magn. Reson. Spectrosc. 28, 137 (1996).
http://dx.doi.org/10.1016/0079-6565(96)90000-X
11.
11.T. Nilsson and B. Halle, J. Chem. Phys. 137, 054503 (2012).
http://dx.doi.org/10.1063/1.4739297
12.
12.P. Roose, H. Bauwin, and B. Halle, J. Phys. Chem. B 103, 5167 (1999).
http://dx.doi.org/10.1021/jp984277l
13.
13.F. V. Chávez, E. Persson, and B. Halle, J. Am. Chem. Soc. 128, 4902 (2006).
http://dx.doi.org/10.1021/ja058837n
14.
14.F. V. Chávez, E. Hellstrand, and B. Halle, J. Phys. Chem. B 110, 21551 (2006).
http://dx.doi.org/10.1021/jp057567s
15.
15.B. Halle and V. P. Denisov, Biophys. J. 69, 242 (1995).
http://dx.doi.org/10.1016/S0006-3495(95)79895-2
16.
16.E. Persson and B. Halle, J. Am. Chem. Soc. 130, 1774 (2008).
http://dx.doi.org/10.1021/ja0775873
17.
17.S. Kaieda and B. Halle, J. Phys. Chem. B 117, 14676 (2013).
http://dx.doi.org/10.1021/jp409234g
18.
18.S. Kaieda and B. Halle, J. Phys. Chem. B 119, 7957 (2015).
http://dx.doi.org/10.1021/acs.jpcb.5b03214
19.
19.E. Persson and B. Halle, Proc. Natl. Acad. Sci. U. S. A. 105, 6266 (2008).
http://dx.doi.org/10.1073/pnas.0709585105
20.
20.Z. Chang and B. Halle, J. Chem. Phys. 139, 144203 (2013).
http://dx.doi.org/10.1063/1.4824105
21.
21.I. Solomon, Phys. Rev. 99, 559 (1955).
http://dx.doi.org/10.1103/PhysRev.99.559
22.
22.See supplementary material at http://dx.doi.org/10.1063/1.4942026 for lists of ISTO basis operators (Appendix A); partial solution of the SLE (Appendix B); expressions for integral relaxation rates (Appendix C); analytical results for the ZF (Appendix D) and MN (Appendix E) regimes; and time evolution ofIz and Sz (Appendix F).[Supplementary Material]
23.
23.F. Persson and B. Halle, J. Am. Chem. Soc. 135, 8735 (2013).
http://dx.doi.org/10.1021/ja403405d
24.
24.G. Binsch, J. Am. Chem. Soc. 91, 1304 (1969).
http://dx.doi.org/10.1021/ja01034a007
25.
25.R. R. Ernst, G. Bodenhausen, and A. Wokaun, Principles of Nuclear Magnetic Resonance in One and Two Dimensions (Clarendon Press, Oxford, 1987).
26.
26.N. R. Skrynnikov, T. N. Khazanovich, and B. C. Sanctuary, Mol. Phys. 91, 977 (1997).
http://dx.doi.org/10.1080/002689797170743
27.
27.D. M. Brink and G. R. Satchler, Angular Momentum, 3rd ed. (Clarendon Press, Oxford, 1994).
28.
28.N. R. Skrynnikov and R. R. Ernst, J. Magn. Reson. 137, 276 (1999).
http://dx.doi.org/10.1006/jmre.1998.1666
29.
29.N. G. van Kampen, Stochastic Processes in Physics and Chemistry, 3rd ed. (North-Holland, Amsterdam, 2007).
30.
30.F. Persson and B. Halle, J. Chem. Theory Comp. 9, 2838 (2013).
http://dx.doi.org/10.1021/ct400161u
31.
31.Z. Luz and S. Meiboom, J. Chem. Phys. 40, 2686 (1964).
http://dx.doi.org/10.1063/1.1725581
32.
32.N. C. Pyper, Mol. Phys. 21, 1 (1971).
http://dx.doi.org/10.1080/00268977100101151
33.
33.S. Szymanski, A. M. Gryff-Keller, and G. Binsch, J. Magn. Reson. 68, 399 (1986).
http://dx.doi.org/10.1016/0022-2364(86)90334-3
34.
34.Z. Chang and B. Halle, J. Chem. Phys. 143, 234201 (2015).
http://dx.doi.org/10.1063/1.4937377
35.
35.M. Tinkham, Group Theory and Quantum Mechanics (McGraw-Hill, New York, 1964).
36.
36.L. G. Werbelow, Encyclopedia of NMR (Wiley, New York, 1996), p. 1776.
37.
37.L. G. Werbelow, J. Chem. Soc., Faraday Trans. 2 83, 897 (1987).
http://dx.doi.org/10.1039/f29878300897
http://aip.metastore.ingenta.com/content/aip/journal/jcp/144/8/10.1063/1.4942026
Loading
/content/aip/journal/jcp/144/8/10.1063/1.4942026
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/144/8/10.1063/1.4942026
2016-02-25
2016-12-05

Abstract

In aqueous systems with immobilized macromolecules, including biological tissue, the longitudinal spin relaxation of water protons is primarily induced by exchange-mediated orientational randomization (EMOR) of intra- and intermolecular magnetic dipole-dipole couplings. We have embarked on a systematic program to develop, from the stochastic Liouville equation, a general and rigorous theory that can describe relaxation by the dipolar EMOR mechanism over the full range of exchange rates, dipole coupling strengths, and Larmor frequencies. Here, we present a general theoretical framework applicable to spin systems of arbitrary size with symmetric or asymmetric exchange. So far, the dipolar EMOR theory is only available for a two-spin system with symmetric exchange. Asymmetric exchange, when the spin system is fragmented by the exchange, introduces new and unexpected phenomena. Notably, the anisotropic dipole couplings of non-exchanging spins break the axial symmetry in spin Liouville space, thereby opening up new relaxation channels in the locally anisotropic sites, including longitudinal-transverse cross relaxation. Such cross-mode relaxation operates only at low fields; at higher fields it becomes nonsecular, leading to an unusual inverted relaxation dispersion that splits the extreme-narrowing regime into two sub-regimes. The general dipolar EMOR theory is illustrated here by a detailed analysis of the asymmetric two-spin case, for which we present relaxation dispersion profiles over a wide range of conditions as well as analytical results for integral relaxation rates and time-dependent spin modes in the zero-field and motional-narrowing regimes. The general theoretical framework presented here will enable a quantitative analysis of frequency-dependent water-proton longitudinal relaxation in model systems with immobilized macromolecules and, ultimately, will provide a rigorous link between relaxation-based magnetic resonance image contrast and molecular parameters.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/144/8/1.4942026.html;jsessionid=LgjSBA1s7DhgbgId8dIps8D-.x-aip-live-03?itemId=/content/aip/journal/jcp/144/8/10.1063/1.4942026&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/144/8/10.1063/1.4942026&pageURL=http://scitation.aip.org/content/aip/journal/jcp/144/8/10.1063/1.4942026'
Right1,Right2,Right3,