Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/144/8/10.1063/1.4942030
1.
1.C. Leyens and M. Peters, Titanium and Titanium Alloys (Wiley Online Library, 2003).
2.
2.H. Conrad, Prog. Mater. Sci. 26, 123 (1981).
http://dx.doi.org/10.1016/0079-6425(81)90001-3
3.
3.A. Fitzner, J. Q. da Fonseca, M. Preuss, M. Thomas, and A. Khan, Analytical, Computational, and Experimental Inelasticity in Deformable Solids (NEAT, 2013), p. 4.
4.
4.P. Kwasniak, M. Muzyk, H. Garbacz, and K. J. Kurzydlowski, Mater. Sci. Eng. A 590, 74 (2014).
http://dx.doi.org/10.1016/j.msea.2013.10.004
5.
5.H. R. Ogden and R. I. Jaffee, “The effects of carbon, oxygen, and nitrogen on the mechanical properties of titanium and titanium alloys,” Technical Report No. TML-20, Titanium Metallurgical Laboratory, Battelle Memorial Institute, Columbus, Ohio, 1955.
6.
6.R. W. Evans, R. J. Hull, and B. Wilshire, J. Mater. Process. Technol. 56, 492 (1996).
http://dx.doi.org/10.1016/0924-0136(96)85109-0
7.
7.S. L. Shang, L. G. Hector, Jr., Y. Wang, and Z.-K. Liu, Phys. Rev. B 83, 224104 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.224104
8.
8.S. Ganeshan, L. G. Hector, and Z.-K. Liu, Acta Mater. 59, 3214 (2011).
http://dx.doi.org/10.1016/j.actamat.2011.01.062
9.
9.S. Ganeshan, L. G. Hector, and Z.-K. Liu, Comput. Mater. Sci. 50, 301 (2010).
http://dx.doi.org/10.1016/j.commatsci.2010.08.019
10.
10.D. Connétable, J. Huez, E. Andrieu, and C. Mijoule, J. Phys.: Condens. Matter 23, 405401 (2011).
http://dx.doi.org/10.1088/0953-8984/23/40/405401
11.
11.H. H. Wu and D. R. Trinkle, Phys. Rev. Lett. 107, 045504 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.045504
12.
12.A. O’Hara and A. A. Demkov, Appl. Phys. Lett. 104, 211909 (2014).
http://dx.doi.org/10.1063/1.4880657
13.
13.U. Landman and M. F. Shlesinger, Phys. Rev. B 19, 6207 (1979).
http://dx.doi.org/10.1103/PhysRevB.19.6207
14.
14.U. Landman and M. F. Shlesinger, Phys. Rev. B 19, 6220 (1979).
http://dx.doi.org/10.1103/PhysRevB.19.6220
15.
15.F. L. Bregolin, M. Behar, and F. Dyment, Appl. Phys. A 86, 481 (2007).
http://dx.doi.org/10.1007/s00339-006-3782-y
16.
16.F. L. Bregolin, M. Behar, and F. Dyment, Appl. Phys. A 90, 347 (2008).
http://dx.doi.org/10.1007/s00339-007-4280-6
17.
17.M. I. De Barros, D. Rats, L. Vandenbulcke, and G. Farges, Diamond Relat. Mater. 8, 1022 (1999).
http://dx.doi.org/10.1016/S0925-9635(98)00439-7
18.
18.M. Köppers, C. Herzig, M. Friesel, and Y. Mishin, Acta Mater. 45, 4181 (1997).
http://dx.doi.org/10.1016/S1359-6454(97)00078-5
19.
19.G. Kresse, M. Marsman, and J. Furthmuller, VASP the Guide, 2010.
20.
20.G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.1758
21.
21.J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
22.
22.H. Eyring, J. Chem. Phys. 3, 107 (1935).
http://dx.doi.org/10.1063/1.1749604
23.
23.G. Henkelman, B. P. Uberuaga, and H. Jónsson, J. Chem. Phys. 113, 9901 (2000).
http://dx.doi.org/10.1063/1.1329672
24.
24.G. Henkelman and H. Jónsson, J. Chem. Phys. 113, 9978 (2000).
http://dx.doi.org/10.1063/1.1323224
25.
25.G. H. Vineyard, J. Phys. Chem. Solids 3, 121 (1957).
http://dx.doi.org/10.1016/0022-3697(57)90059-8
26.
26.See supplementary material at http://dx.doi.org/10.1063/1.4942030 for a complete description of the matrices used in the Multi-State Diffusion method applied to O, N, and C diffusion inα-Ti.[Supplementary Material]
27.
27.J. Beeler, Jr., Phys. Rev. 150, 470 (1966).
http://dx.doi.org/10.1103/PhysRev.150.470
28.
28.S. Ulam, R. D. Richtmyer, and J. Von Neumann, LAMS-551, Los Alamos National Laboratory, 1947, p. 1.
29.
29.D. Vanderbilt, Phys. Rev. B 41, 7892 (1990).
http://dx.doi.org/10.1103/PhysRevB.41.7892
30.
30.G. Kresse and J. Hafner, J. Phys.: Condens. Matter 6, 8245 (1994).
http://dx.doi.org/10.1088/0953-8984/6/40/015
31.
31.J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).
http://dx.doi.org/10.1103/PhysRevB.45.13244
32.
32.R. G. Hennig, D. R. Trinkle, J. Bouchet, S. G. Srinivasan, R. C. Albers, and J. W. Wilkins, Nat. Mater. 4, 129 (2005).
http://dx.doi.org/10.1038/nmat1292
33.
33.W. L. Finlay and J. A. Snyder, Trans. AIME 188, 277 (1950).
http://aip.metastore.ingenta.com/content/aip/journal/jcp/144/8/10.1063/1.4942030
Loading
/content/aip/journal/jcp/144/8/10.1063/1.4942030
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/144/8/10.1063/1.4942030
2016-02-23
2016-10-01

Abstract

The high affinity of O, N, and C with -Ti has a serious detrimental influence on the high-temperature properties of these alloys, promoting the formation of -case. These elements dissolve in interstitial sites and diffuse very fast in -Ti (103-108 times higher than the self-diffusivity of Ti) at high temperature accelerating the growth of phase surface layer. Understanding the diffusion mechanisms of these elements is crucial to the design of high-temperature Ti alloys. This work aims to determine the stable interstitial sites and migration paths of O, N, and C in -Ti. Diffusion coefficients were evaluated applying an analytical model, the multi-state diffusion method, and kinetic Monte Carlo simulations informed by first-principles calculations. The results show the reliability of these two methods with respect to the experimental data. In addition to octahedral sites, less traditional interstitial sites are shown to be stable configurations for these elements instead of tetrahedral sites. This requires to update the transition pathway networks through which these elements have been thought to migrate in -Ti.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/144/8/1.4942030.html;jsessionid=enampxXkXQvJwNLrhGbVdwED.x-aip-live-02?itemId=/content/aip/journal/jcp/144/8/10.1063/1.4942030&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/144/8/10.1063/1.4942030&pageURL=http://scitation.aip.org/content/aip/journal/jcp/144/8/10.1063/1.4942030'
Right1,Right2,Right3,