Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.G. M. Whitesides and M. Boncheva, Proc. Natl. Acad. Sci. U. S. A. 99, 47694774 (2002).
2.B. Santra, J. Klimeš, D. Alfè, A. Tkatchenko, B. Slater, A. Michaelides, R. Car, and M. Scheffler, Phys. Rev. Lett. 107, 185701-1185701-5 (2011).
3.H. Ma, Y. Ding, M. Iannuzzi, T. Brugger, S. Berner, J. Hutter, J. Osterwalder, and T. Greber, Langmuir 28, 1524615250 (2012).
4.K. Morgenstern and K.-H. Rieder, Chem. Phys. Lett. 358, 250256 (2002).
5.H. Gawronski, K. Morgenstern, and K. H. Rieder, Eur. Phys. J. D 35, 349353 (2005).
6.K. Morgenstern and K.-H. Rieder, J. Chem. Phys. 116, 57465752 (2002).
7.A. Michaelides and K. Morgenstern, Nat. Mater. 6, 597601 (2007).
8.K. Morgenstern and J. Nieminen, J. Chem. Phys. 120, 1078610791 (2004).
9.K. Morgenstern and J. Nieminen, Phys. Rev. Lett. 88, 066102-1066102-4 (2002).
10.Y. Ding, M. Iannuzzi, and J. R. Hutter, J. Phys. Chem. C 115, 1368513692 (2011).
11.K. Morgenstern, H. Gawronski, M. Mehlhorn, and K.-H. Rieder, J. Mod. Opt. 51, 28132819 (2004).
12.M. Mehlhorn, J. Carrasco, A. Michaelides, and K. Morgenstern, Phys. Rev. Lett. 103, 026101-1026101-4 (2009).
13.H. Gawronski, J. Carrasco, A. Michaelides, and K. Morgenstern, Phys. Rev. Lett. 101, 136102-1136102-4 (2008).
14.J. Carrasco, A. Hodgson, and A. Michaelides, Nat. Mater. 11, 667674 (2012).
15.J. Cerdá, A. Michaelides, M. L. Bocquet, P. J. Feibelman, T. Mitsui, M. Rose, E. Fomin, and M. Salmeron, Phys. Rev. Lett. 93, 116101-1116101-4 (2004).
16.K. Morgenstern, Surf. Sci. 504, 293300 (2002).
17.T. Mitsui, M. K. Rose, E. Fomin, D. F. Ogletree, and M. Salmeron, Science 297, 18501852 (2002).
18.A. E. Baber, T. J. Lawton, and E. C. H. Sykes, J. Phys. Chem. C 115, 91579163 (2011).
19.T. J. Lawton, J. Carrasco, A. E. Baber, A. Michaelides, and E. C. H. Sykes, Phys. Rev. Lett. 107, 256101-1256101-5 (2011).
20.T. J. Lawton, J. Carrasco, A. E. Baber, A. Michaelides, and E. C. Sykes, Phys. Chem. Chem. Phys. 214, 1184611852 (2012).
21.C. J. Murphy, J. Carrasco, T. J. Lawton, M. L. Liriano, A. E. Baber, E. A. Lewis, A. Michaelides, and E. C. Sykes, J. Chem. Phys. 141, 014701-1014701-10 (2014).
22.D. O. Bellisario, A. D. Jewell, H. L. Tierney, A. E. Baber, and E. C. H. Sykes, J. Phys. Chem. C 114, 1458214589 (2010).
23.A. D. Jewell, H. L. Tierney, and E. C. H. Sykes, Phys. Rev. B 82, 205104-1205104-6 (2010).
24.A. D. Jewell, H. L. Tierney, O. Zenasni, T. R. Lee, and E. C. H. Sykes, Top. Catal. 54, 13571367 (2011).
25.A. F. McGuire, A. D. Jewell, T. J. Lawton, C. J. Murphy, E. A. Lewis, and E. C. H. Sykes, J. Phys. Chem. C 116, 1499214997 (2012).
26.F. Gao, Y. Wang, and W. T. Tysoe, J. Phys. Chem. C 112, 61456150 (2008).
27.L. Burkholder, D. Stacchiola, J. A. Boscoboinik, and W. T. Tysoe, J. Phys. Chem. C 113, 1387713885 (2009).
28.D. Stacchiola, L. Burkholder, and W. T. Tysoe, J. Am. Chem. Soc. 124, 89848989 (2002).
29.I. Lee and F. Zaera, J. Phys. Chem. B 109, 1292012926 (2005).
30.F. Gao, Y. Wang, L. Burkholder, and W. T. Tysoe, J. Am. Chem. Soc. 129, 1524015249 (2007).
31.F. Gao, Y. Wang, L. Burkholder, C. Hirschmugl, D. K. Saldin, H. C. Poon, D. Sholl, J. James, and W. T. Tysoe, Surf. Sci. 602, 22642270 (2008).
32.F. Gao, Y. Wang, Z. Li, O. Furlong, and W. T. Tysoe, J. Phys. Chem. C 112, 33623372 (2008).
33.J. Klimeš, D. R. Bowler, and A. Michaelides, J. Phys.: Condens. Matter 22, 022201-1022201-4 (2010).
34.G. Kresse and J. Furthmüller, Phys. Rev. B 54, 1116911186 (1996).
35.M. Dion, H. Rydberg, E. Schröder, D. C. Langreth, and B. I. Lundqvist, Phys. Rev. Lett. 92, 246401-1246401-4 (2004).
36.J. Carrasco, J. Klimeš, and A. Michaelides, J. Chem. Phys. 138, 024708 (2013).
37.J. Carrasco, B. Santra, J. Klimeš, and A. Michaelides, Phys. Rev. Lett. 106, 026101-1026101-4 (2011).
38.W. Lew, M. C. Crowe, C. T. Campbell, J. Carrasco, and A. Michaelides, J. Phys. Chem. C 115, 2300823012 (2011).
39.G. Kresse and D. Joubert, Phys. Rev. B 59, 17581775 (1999).
40.J. Tersoff and D. R. Hamann, Phys. Rev. Lett. 50, 19982001 (1983).
41.J. Barth, H. Brune, G. Ertl, and R. Behm, Phys. Rev. B 42, 93079318 (1990).
42.M. O. Lorenzo, C. J. Baddeley, C. Muryn, and R. Raval, Nature 404, 376379 (2000).
43.N. Liu, S. Haq, G. R. Darling, and R. Raval, Angew. Chem. 119, 77577760 (2007).
44.S. Haq, N. Liu, V. Humblot, A. P. Jansen, and R. Raval, Nat. Chem. 1, 409414 (2009).
45.R. Raval, Chem. Soc. Rev. 38, 707721 (2009).
46.E. V. Iski, B. F. Johnston, A. J. Florence, A. J. Urquhart, and E. C. H. Sykes, ACS Nano 4, 50615068 (2010).
47.M. Forster, M. S. Dyer, M. Persson, and R. Raval, J. Am. Chem. Soc. 133, 1599216000 (2011).
48.A. G. Mark, M. Forster, and R. Raval, ChemPhysChem 12, 14741480 (2011).
49.K.-H. Ernst, Phys. Status Solidi B 249, 20572088 (2012).
50.T. J. Lawton, V. Pushkarev, D. Wei, F. R. Lucci, D. S. Sholl, A. J. Gellman, and E. C. H. Sykes, J. Phys. Chem. C 117, 2229022297 (2013).
51.M. Podsiadło, E. Patyk, and A. Katrusiak, CrystEngComm 14, 64196423 (2012).
52.A. Michaelides, Faraday Discuss. 136, 287297 (2007).
53.J. Klimeš and A. Michaelides, J. Chem. Phys. 137, 120901 (2012).
54.E. V. Iski, A. D. Jewell, H. L. Tierney, G. Kyriakou, and E. C. H. Sykes, Surf. Sci. 606, 536541 (2012).
55.A. D. Jewell, S. J. Kyran, D. Rabinovich, and E. C. Sykes, Chem. - Eur. J. 18, 71697178 (2012).
56.A. D. Jewell, E. C. H. Sykes, and G. Kyriakou, ACS Nano 6, 35453552 (2012).
57.See supplementary material at for Figure S1 where we show DFT optimized R-2-BuOH structures on Au(111). In Figure S2, we show STM simulated images. In Figure S3, we show the DFT interaction energy of two tetramers in gas phase.[Supplementary Material]

Data & Media loading...


Article metrics loading...



The assembly of complex structures in nature is driven by an interplay between several intermolecular interactions, from strong covalent bonds to weaker dispersion forces. Understanding and ultimately controlling the self-assembly of materials requires extensive study of how these forces drive local nanoscale interactions and how larger structures evolve. Surface-based self-assembly is particularly amenable to modeling and measuring these interactions in well-defined systems. This study focuses on 2-butanol, the simplest aliphatic chiral alcohol. 2-butanol has recently been shown to have interesting properties as a chiral modifier of surface chemistry; however, its mode of action is not fully understood and a microscopic understanding of the role non-covalent interactions play in its adsorption and assembly on surfaces is lacking. In order to probe its surface properties, we employed high-resolution scanning tunneling microscopy and density functional theory(DFT) simulations. We found a surprisingly rich degree of enantiospecific adsorption, association, chiral cluster growth and ultimately long range, highly ordered chiral templating. Firstly, the chiral molecules acquire a second chiral center when adsorbed to the surface via dative bonding of one of the oxygen atom lone pairs. This interaction is controlled via the molecule’s intrinsic chiral center leading to monomers of like chirality, at both chiral centers, adsorbed on the surface. The monomers then associate into tetramers via a cyclical network of hydrogen bonds with an opposite chirality at the oxygen atom. The evolution of these square units is surprising given that the underlying surface has a hexagonal symmetry. Our DFT calculations, however, reveal that the tetramers are stable entities that are able to associate with each other by weaker van der Waals interactions and tessellate in an extended square network. This network of homochiral square pores grows to cover the whole Au(111) surface. Our data reveal that the chirality of a simple alcohol can be transferred to its surface binding geometry, drive the directionality of hydrogen-bonded networks and ultimately extended structure. Furthermore, this study provides the first microscopic insight into the surface properties of this important chiral modifier and provides a well-defined system for studying the network’s enantioselective interaction with other molecules.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd