Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.C. Wäckerlin, D. Chylarecka, A. Kleibert, K. Müller, C. Iacovita, F. Nolting, T. A. Jung, and N. Ballav, Nat. Commun. 1, 61 (2010).
2.C. Isvoranu, B. Wang, K. Schulte, E. Ataman, J. Knudsen, J. N. Andersen, M.-L. Bocquet, and J. Schnadt, J. Phys.: Condens. Matter 22, 472002 (2010).
3.P. Liljeroth, J. Repp, and G. Meyer, Science 317, 1203 (2007).
4.Y. Okawa, S. K. Mandal, C. Hu, Y. Tateyama, S. Goedecker, S. Tsukamoto, T. Hasegawa, J. K. Gimzewski, and M. Aono, J. Am. Chem. Soc. 133, 8227 (2011).
5.Y. L. Huang, Y. H. Lu, T. C. Niu, H. Huang, S. Kera, N. Ueno, A. T. S. Wee, and W. Chen, Small 8, 1423 (2012).
6.P. Borghetti, A. El-Sayed, E. Goiri, C. Rogero, J. Lobo-Checa, L. Floreano, J. E. Ortega, and D. G. de Oteyza, ACS Nano 8, 12786 (2014).
7.M. Schmid, A. Kaftan, H.-P. Steinrück, and J. M. Gottfried, Surf. Sci. 606, 945 (2012).
8.M. Toader, P. Shukrynau, M. Knupfer, D. R. T. Zahn, and M. Hietschold, Langmuir 28, 13325 (2012).
9.A. Ruocco, F. Evangelista, R. Gotter, A. Attili, and G. Stefani, J. Phys. Chem. C 112, 2016 (2008).
10.A. Zhao, Q. Li, L. Chen, H. Xiang, W. Wang, S. Pan, B. Wang, X. Xiao, J. Yang, J. G. Hou, and Q. Zhu, Science 309, 1542 (2005).
11.N. Tsukahara, K. Noto, M. Ohara, S. Shiraki, N. Takagi, Y. Takata, J. Miyawaki, M. Taguchi, A. Chainani, S. Shin, and M. Kawai, Phys. Rev. Lett. 102, 167203 (2009).
12.T. Niu, M. Zhou, J. Zhang, Y. Feng, and W. Chen, J. Phys. Chem. C 117, 1013 (2013).
13.Y. Bai, F. Buchner, M. T. Wendal, I. Kellner, A. Bayer, H.-P. Steinrück, H. Marbach, and J. M. Gottfried, J. Phys. Chem. C 112, 6087 (2008).
14.J. Åhlund, J. Schnadt, K. Nilson, E. Göthelid, J. Schiessling, F. Besenbacher, N. Mårtensson, and C. Puglia, Surf. Sci. 601, 3661 (2007).
15.B. Stadtmüuller, I. Kröger, F. Reinert, and C. Kumpf, Phys. Rev. B 83, 085416 (2011).
16.K. Manandhar, T. Ellis, K. T. Park, T. Cai, Z. Song, and J. Hrbek, Surf. Sci. 601, 3623 (2007).
17.K. Manandhar, K. T. Park, S. Ma, and J. Hrbek, Surf. Sci. 603, 636 (2009).
18.A. Wiengarten, K. Seufert, W. Auwärter, D. Ecija, K. Diller, F. Allegretti, F. Bischoff, S. Fischer, D. A. Duncan, A. C. Papageorgiou, F. Klappenberger, R. G. Acres, T. H. Ngo, and J. V. Barth, J. Am. Chem. Soc. 136, 9346 (2014).
19.R. Lindner and A. Kühnle, ChemPhysChem 16, 1582 (2015).
20.R. Nyholm, J. N. Andersen, U. Johansson, B. N. Jensen, and I. Lindau, Nucl. Instrum. Methods Phys. Res., Sect. A 467-468, 520 (2001).
21.I. Horcas, R. Fernández, J. M. Gómez-Rodrígues, J. Colchero, J. Gómez-Herrero, and A. M. Baro, Rev. Sci. Instrum. 78, 013705 (2007).
22.L. A. Rochford, I. Hancox, and T. S. Jones, Surf. Sci. 628, 62 (2014).
23.S.-H. Chang, S. Kuck, J. Brede, L. Lichtenstein, G. Hoffmann, and R. Wiesendanger, Phys. Rev. B 78, 233409 (2008).
24.A. Scarfato, S.-H. Chang, S. Kuck, J. Brede, G. Hoffmann, and R. Wiesendanger, Surf. Sci. 602, 677 (2008).
25.See supplementary material at for STM images of FePc/carbon monoxide co-adsorption experiments for determination of the FePc binding site on Cu(111), N 1s XAS data of a FePc monolayer on Cu(111) (as-prepared at room temperature and annealed to 320 °C) over the extended photon energy range of 396 - 420 eV, comparison of the Fe 2p XP spectra of FePc/Cu(111) before and after annealing, and comparison of the N 1s XP spectra of FePc/Cu(111) before and after annealing.[Supplementary Material]
26.J. C. Buchholz and G. A. Somorjai, J. Chem. Phys. 66, 573 (1977).
27.O. Snezhkova, J. Lüder, A. Wiengarten, S. R. Burema, F. Bischoff, Y. He, J. Rusz, J. Knudsen, M.-L. Bocquet, K. Seufert, J. V. Barth, W. Auwärter, B. Brena, and J. Schnadt, Phys. Rev. B 92, 075428 (2015).
28.B. Brena and Y. Luo, Radiat. Phys. Chem. 75, 1578 (2006).
29.B. Brena, Y. Luo, M. Nyberg, S. Carniato, K. Nilson, Y. Alfredsson, J. Åhlund, N. Mårtensson, H. Siegbahn, and C. Puglia, Phys. Rev. B 70, 195214 (2004).
30.C. Isvoranu, J. Knudsen, E. Ataman, K. Schulte, B. Wang, M.-L. Bocquet, J. N. Andersen, and J. Schnadt, J. Chem. Phys. 134, 114711 (2011).
31.C. Isvoranu, B. Wang, E. Ataman, K. Schulte, J. Knudsen, J. N. Andersen, M.-L. Bocquet, and J. Schnadt, J. Phys. Chem. C 115, 20201 (2011).
32.C. Isvoranu, J. Åhlund, B. Wang, E. Ataman, N. Mårtensson, C. Puglia, J. N. Andersen, M.-L. Bocquet, and J. Schnadt, J. Chem. Phys. 131, 214709 (2009).
33.E. Annese, J. Fujii, I. Vobornik, and G. Rossi, J. Phys. Chem. C 115, 17409 (2011).
34.F. Petraki, H. Peisert, U. Aygül, F. Latteyer, J. Uihlein, A. Vollmer, and T. Chassé, J. Phys. Chem. C 116, 11110 (2012).
35.I. Minkov, F. Gel’mukhanov, H. Ågren, R. Friedlein, C. Suess, and W. R. Salaneck, J. Phys. Chem. A 109, 1330 (2005).
36.J. Åhlund, K. Nilson, J. Schiessling, L. Kjeldgaard, S. Berner, N. Mårtensson, C. Puglia, B. Brena, M. Nyberg, and Y. Luo, J. Chem. Phys. 125, 034709 (2006).
37.B. W. Heinrich, C. Iacovita, T. Brumme, D.-J. Choi, L. Limot, M. V. Rastei, W. A. Hofer, J. Kortus, and J.-P. Bucher, J. Phys. Chem. Lett. 1, 1517 (2010).
38.I. Kröger, B. Stadtmüller, C. Kleimann, P. Rajput, and C. Kumpf, Phys. Rev. B 83, 195414 (2011).
39.K. Mudiyanselage, Y. Yang, F. M. Hoffmann, O. J. Furlong, J. Hrbek, M. G. White, P. Liu, and D. J. Stacchiola, J. Chem. Phys. 139, 044712 (2013).
40.T. Kravchuk, V. Venugopal, L. Vattuone, L. Burkholder, W. T. Tysoe, M. Smerieri, and M. Rocca, J. Phys. Chem. C 113, 20881 (2009).
41.M. Witko and K. Hermann, Appl. Catal., A 172, 85 (1998).

Data & Media loading...


Article metrics loading...



We have examined the geometric and electronic structures of iron phthalocyanine assemblies on a Cu(111) surface at different sub- to mono-layer coverages and the changes induced by thermal annealing at temperatures between 250 and 320 °C by scanning tunneling microscopy,x-ray photoelectron spectroscopy, and x-ray absorption spectroscopy. The symmetry breaking observed in scanning tunneling microscopy images is found to be coverage dependent and to persist upon annealing. Further, we find that annealing to temperatures between 300 and 320 °C leads to both desorption of iron phthalocyanine molecules from the surface and their agglomeration. We see clear evidence of temperature-induced homocoupling reactions of the iron phthalocyanine molecules following dehydrogenation of their isoindole rings, similar to what has been observed for related tetrapyrroles on transition metal surfaces. Finally, spectroscopy indicates a modified substrate-adsorbate interaction upon annealing with a shortened bond distance. This finding could potentially explain a changed reactivity of Cu-supported iron phthalocyanine in comparison to that of the pristine compound.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd