Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/144/9/10.1063/1.4942121
1.
1.C. Wäckerlin, D. Chylarecka, A. Kleibert, K. Müller, C. Iacovita, F. Nolting, T. A. Jung, and N. Ballav, Nat. Commun. 1, 61 (2010).
http://dx.doi.org/10.1038/ncomms1057
2.
2.C. Isvoranu, B. Wang, K. Schulte, E. Ataman, J. Knudsen, J. N. Andersen, M.-L. Bocquet, and J. Schnadt, J. Phys.: Condens. Matter 22, 472002 (2010).
http://dx.doi.org/10.1088/0953-8984/22/47/472002
3.
3.P. Liljeroth, J. Repp, and G. Meyer, Science 317, 1203 (2007).
http://dx.doi.org/10.1126/science.1144366
4.
4.Y. Okawa, S. K. Mandal, C. Hu, Y. Tateyama, S. Goedecker, S. Tsukamoto, T. Hasegawa, J. K. Gimzewski, and M. Aono, J. Am. Chem. Soc. 133, 8227 (2011).
http://dx.doi.org/10.1021/ja111673x
5.
5.Y. L. Huang, Y. H. Lu, T. C. Niu, H. Huang, S. Kera, N. Ueno, A. T. S. Wee, and W. Chen, Small 8, 1423 (2012).
http://dx.doi.org/10.1002/smll.201101967
6.
6.P. Borghetti, A. El-Sayed, E. Goiri, C. Rogero, J. Lobo-Checa, L. Floreano, J. E. Ortega, and D. G. de Oteyza, ACS Nano 8, 12786 (2014).
http://dx.doi.org/10.1021/nn5060333
7.
7.M. Schmid, A. Kaftan, H.-P. Steinrück, and J. M. Gottfried, Surf. Sci. 606, 945 (2012).
http://dx.doi.org/10.1016/j.susc.2012.02.012
8.
8.M. Toader, P. Shukrynau, M. Knupfer, D. R. T. Zahn, and M. Hietschold, Langmuir 28, 13325 (2012).
http://dx.doi.org/10.1021/la302792z
9.
9.A. Ruocco, F. Evangelista, R. Gotter, A. Attili, and G. Stefani, J. Phys. Chem. C 112, 2016 (2008).
http://dx.doi.org/10.1021/jp076299q
10.
10.A. Zhao, Q. Li, L. Chen, H. Xiang, W. Wang, S. Pan, B. Wang, X. Xiao, J. Yang, J. G. Hou, and Q. Zhu, Science 309, 1542 (2005).
http://dx.doi.org/10.1126/science.1113449
11.
11.N. Tsukahara, K. Noto, M. Ohara, S. Shiraki, N. Takagi, Y. Takata, J. Miyawaki, M. Taguchi, A. Chainani, S. Shin, and M. Kawai, Phys. Rev. Lett. 102, 167203 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.167203
12.
12.T. Niu, M. Zhou, J. Zhang, Y. Feng, and W. Chen, J. Phys. Chem. C 117, 1013 (2013).
http://dx.doi.org/10.1021/jp310196k
13.
13.Y. Bai, F. Buchner, M. T. Wendal, I. Kellner, A. Bayer, H.-P. Steinrück, H. Marbach, and J. M. Gottfried, J. Phys. Chem. C 112, 6087 (2008).
http://dx.doi.org/10.1021/jp711122w
14.
14.J. Åhlund, J. Schnadt, K. Nilson, E. Göthelid, J. Schiessling, F. Besenbacher, N. Mårtensson, and C. Puglia, Surf. Sci. 601, 3661 (2007).
http://dx.doi.org/10.1016/j.susc.2007.06.008
15.
15.B. Stadtmüuller, I. Kröger, F. Reinert, and C. Kumpf, Phys. Rev. B 83, 085416 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.085416
16.
16.K. Manandhar, T. Ellis, K. T. Park, T. Cai, Z. Song, and J. Hrbek, Surf. Sci. 601, 3623 (2007).
http://dx.doi.org/10.1016/j.susc.2007.07.007
17.
17.K. Manandhar, K. T. Park, S. Ma, and J. Hrbek, Surf. Sci. 603, 636 (2009).
http://dx.doi.org/10.1016/j.susc.2008.12.031
18.
18.A. Wiengarten, K. Seufert, W. Auwärter, D. Ecija, K. Diller, F. Allegretti, F. Bischoff, S. Fischer, D. A. Duncan, A. C. Papageorgiou, F. Klappenberger, R. G. Acres, T. H. Ngo, and J. V. Barth, J. Am. Chem. Soc. 136, 9346 (2014).
http://dx.doi.org/10.1021/ja501680n
19.
19.R. Lindner and A. Kühnle, ChemPhysChem 16, 1582 (2015).
http://dx.doi.org/10.1002/cphc.201500161
20.
20.R. Nyholm, J. N. Andersen, U. Johansson, B. N. Jensen, and I. Lindau, Nucl. Instrum. Methods Phys. Res., Sect. A 467-468, 520 (2001).
http://dx.doi.org/10.1016/S0168-9002(01)00399-0
21.
21.I. Horcas, R. Fernández, J. M. Gómez-Rodrígues, J. Colchero, J. Gómez-Herrero, and A. M. Baro, Rev. Sci. Instrum. 78, 013705 (2007).
http://dx.doi.org/10.1063/1.2432410
22.
22.L. A. Rochford, I. Hancox, and T. S. Jones, Surf. Sci. 628, 62 (2014).
http://dx.doi.org/10.1016/j.susc.2014.05.010
23.
23.S.-H. Chang, S. Kuck, J. Brede, L. Lichtenstein, G. Hoffmann, and R. Wiesendanger, Phys. Rev. B 78, 233409 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.233409
24.
24.A. Scarfato, S.-H. Chang, S. Kuck, J. Brede, G. Hoffmann, and R. Wiesendanger, Surf. Sci. 602, 677 (2008).
http://dx.doi.org/10.1016/j.susc.2007.11.011
25.
25.See supplementary material at http://dx.doi.org/10.1063/1.4942121 for STM images of FePc/carbon monoxide co-adsorption experiments for determination of the FePc binding site on Cu(111), N 1s XAS data of a FePc monolayer on Cu(111) (as-prepared at room temperature and annealed to 320 °C) over the extended photon energy range of 396 - 420 eV, comparison of the Fe 2p XP spectra of FePc/Cu(111) before and after annealing, and comparison of the N 1s XP spectra of FePc/Cu(111) before and after annealing.[Supplementary Material]
26.
26.J. C. Buchholz and G. A. Somorjai, J. Chem. Phys. 66, 573 (1977).
http://dx.doi.org/10.1063/1.433979
27.
27.O. Snezhkova, J. Lüder, A. Wiengarten, S. R. Burema, F. Bischoff, Y. He, J. Rusz, J. Knudsen, M.-L. Bocquet, K. Seufert, J. V. Barth, W. Auwärter, B. Brena, and J. Schnadt, Phys. Rev. B 92, 075428 (2015).
http://dx.doi.org/10.1103/PhysRevB.92.075428
28.
28.B. Brena and Y. Luo, Radiat. Phys. Chem. 75, 1578 (2006).
http://dx.doi.org/10.1016/j.radphyschem.2005.07.017
29.
29.B. Brena, Y. Luo, M. Nyberg, S. Carniato, K. Nilson, Y. Alfredsson, J. Åhlund, N. Mårtensson, H. Siegbahn, and C. Puglia, Phys. Rev. B 70, 195214 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.195214
30.
30.C. Isvoranu, J. Knudsen, E. Ataman, K. Schulte, B. Wang, M.-L. Bocquet, J. N. Andersen, and J. Schnadt, J. Chem. Phys. 134, 114711 (2011).
http://dx.doi.org/10.1063/1.3563636
31.
31.C. Isvoranu, B. Wang, E. Ataman, K. Schulte, J. Knudsen, J. N. Andersen, M.-L. Bocquet, and J. Schnadt, J. Phys. Chem. C 115, 20201 (2011).
http://dx.doi.org/10.1021/jp204460g
32.
32.C. Isvoranu, J. Åhlund, B. Wang, E. Ataman, N. Mårtensson, C. Puglia, J. N. Andersen, M.-L. Bocquet, and J. Schnadt, J. Chem. Phys. 131, 214709 (2009).
http://dx.doi.org/10.1063/1.3259699
33.
33.E. Annese, J. Fujii, I. Vobornik, and G. Rossi, J. Phys. Chem. C 115, 17409 (2011).
http://dx.doi.org/10.1021/jp203200s
34.
34.F. Petraki, H. Peisert, U. Aygül, F. Latteyer, J. Uihlein, A. Vollmer, and T. Chassé, J. Phys. Chem. C 116, 11110 (2012).
http://dx.doi.org/10.1021/jp302233e
35.
35.I. Minkov, F. Gel’mukhanov, H. Ågren, R. Friedlein, C. Suess, and W. R. Salaneck, J. Phys. Chem. A 109, 1330 (2005).
http://dx.doi.org/10.1021/jp045447z
36.
36.J. Åhlund, K. Nilson, J. Schiessling, L. Kjeldgaard, S. Berner, N. Mårtensson, C. Puglia, B. Brena, M. Nyberg, and Y. Luo, J. Chem. Phys. 125, 034709 (2006).
http://dx.doi.org/10.1063/1.2212404
37.
37.B. W. Heinrich, C. Iacovita, T. Brumme, D.-J. Choi, L. Limot, M. V. Rastei, W. A. Hofer, J. Kortus, and J.-P. Bucher, J. Phys. Chem. Lett. 1, 1517 (2010).
http://dx.doi.org/10.1021/jz100346a
38.
38.I. Kröger, B. Stadtmüller, C. Kleimann, P. Rajput, and C. Kumpf, Phys. Rev. B 83, 195414 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.195414
39.
39.K. Mudiyanselage, Y. Yang, F. M. Hoffmann, O. J. Furlong, J. Hrbek, M. G. White, P. Liu, and D. J. Stacchiola, J. Chem. Phys. 139, 044712 (2013).
http://dx.doi.org/10.1063/1.4816515
40.
40.T. Kravchuk, V. Venugopal, L. Vattuone, L. Burkholder, W. T. Tysoe, M. Smerieri, and M. Rocca, J. Phys. Chem. C 113, 20881 (2009).
http://dx.doi.org/10.1021/jp904794n
41.
41.M. Witko and K. Hermann, Appl. Catal., A 172, 85 (1998).
http://dx.doi.org/10.1016/S0926-860X(98)00108-2
http://aip.metastore.ingenta.com/content/aip/journal/jcp/144/9/10.1063/1.4942121
Loading
/content/aip/journal/jcp/144/9/10.1063/1.4942121
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/144/9/10.1063/1.4942121
2016-03-01
2016-12-09

Abstract

We have examined the geometric and electronic structures of iron phthalocyanine assemblies on a Cu(111) surface at different sub- to mono-layer coverages and the changes induced by thermal annealing at temperatures between 250 and 320 °C by scanning tunneling microscopy,x-ray photoelectron spectroscopy, and x-ray absorption spectroscopy. The symmetry breaking observed in scanning tunneling microscopy images is found to be coverage dependent and to persist upon annealing. Further, we find that annealing to temperatures between 300 and 320 °C leads to both desorption of iron phthalocyanine molecules from the surface and their agglomeration. We see clear evidence of temperature-induced homocoupling reactions of the iron phthalocyanine molecules following dehydrogenation of their isoindole rings, similar to what has been observed for related tetrapyrroles on transition metal surfaces. Finally, spectroscopy indicates a modified substrate-adsorbate interaction upon annealing with a shortened bond distance. This finding could potentially explain a changed reactivity of Cu-supported iron phthalocyanine in comparison to that of the pristine compound.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/144/9/1.4942121.html;jsessionid=wBqvHW_WX0t7aG_ByKlJOPE5.x-aip-live-03?itemId=/content/aip/journal/jcp/144/9/10.1063/1.4942121&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/144/9/10.1063/1.4942121&pageURL=http://scitation.aip.org/content/aip/journal/jcp/144/9/10.1063/1.4942121'
Right1,Right2,Right3,