Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.X. Zhang, V. Stevanović, M. d’Avezac, S. Lany, and A. Zunger, “Prediction of A2BX4 metal-chalcogenide compounds via first-principles thermodynamics,” Phys. Rev. B 86, 014109 (2012).
2.M. Takahashi and M. E. Fine, “Magnetic behavior of quenched and aged CoFe2O4–Co3O4 alloys,” J. App. Phys. 43, 42054216 (1972).
3.J. A. Moyer, C. A. F. Vaz, E. Negusse, D. A. Arena, and V. E. Henrich, “Controlling the electronic structure of Co1−xFe2+xO4 thin films through iron doping,” Phys. Rev. B 83, 035121 (2011).
4.F. Y. Ran, Y. Tsunemaru, T. Hasegawa, Y. Takeichi, A. Harasawa, K. Yaji, S. Kim, and A. Kakizaki, “Valence band structure and magnetic properties of Co-doped Fe3O4(100) films,” J. Appl. Phys. 109, 123919 (2011).
5.R. M. Cornell and U. Schwertmann, The Iron Oxides (John Wiley & Sons Ltd, Weinheim, 1997).
6.W. L. Roth, “The magnetic structure of Co3O4,” J. Phys. Chem. Solids 25, 110 (1964).
7.Handbook of Magnetism and Advanced Magnetic Materials, 5th ed., edited by H. Kronmüller and S. Parkin (Wiley-Blackwell, 2007).
8.A. Lopez-Ortega, E. Lottini, C. de Julián Fernández, and C. Sangregorio, “Exploring the magnetic properties of cobalt-ferrite nanoparticles for the development of a rare-earth-free permanent magnet,” Chem. Mater. 27, 4048 (2015).
9.P. J. van der Zaag, P. J. H. Bloemen, J. M. Gaines, R. M. Wolf, P. A. A. van der Heijden, R. J. M. van de Veerdonk, and W. J. M. de Jonge, “On the construction of an Fe3O4-based all-oxide spin valve,” J. Magn. Magn. Mater. 211, 301308 (2000).
10.F. Rigato, S. Piano, M. Foerster, F. Giubileo, A. M. Cucolo, and J. Fontcuberta, “Andreev reflection in ferrimagnetic CoFe2O4 spin filters,” Phys. Rev. B 81, 174415 (2010).
11.M. Bibes, J. E. Villegas, and A. Barthélémy, “Ultrathin oxide films and interfaces for electronics and spintronics,” Adv. Phys. 60, 584 (2011).
12.P. Seneor, A. Fert, J.-L. Maurice, F. Montaigne, F. Petroff, and A. Vaurès, “Large magnetoresistance in tunnel junctions with an iron oxide electrode,” App. Phys. Lett. 74, 4017 (1999).
13.E. Wada, K. Watanabe, Y. Shirahata, M. Itoh, M. Yamaguchi, and T. Taniyama, “Efficient spin injection into GaAs quantum well across Fe3O4 spin filter,” Appl. Phys. Lett. 96, 102510 (2010).
14.D. G. Rethwisch and J. A. Dumesic, “The effect of metaloxygen bond strength on properties of oxides. II. Watergas shift over bulk oxides,” Appl. Catal. 21, 97 (1986).
15.C. Ratnasamy and J. P. Wagner, “Water gas shift catalysis,” Catal. Rev.-Sci. Eng. 51, 325 (2009).
16.G. S. Parkinson, Z. Novotny, P. Jacobson, M. Schmid, and U. Diebold, “Room temperature water splitting at the surface of magnetite,” J. Am. Chem. Soc. 133, 12650 (2011).
17.G. A. Huff and C. N. Satterfield, “Intrinsic kinetics of the Fischer-Tropsch synthesis on a reduced fused-magnetite catalyst,” Ind. Eng. Chem. Process Des. Dev. 23, 696 (1984).
18.J. A. Koza, Z. He, A. S. Miller, and J. A. Switzer, “Electrodeposition of crystalline Co3O4-a catalyst for the oxygen evolution reaction,” Chem. Mater. 24, 3567 (2012).
19.K. R. Rao, P. K. Rao, S. Masthan, L. Kaluschnaya, and V. Shur, “New type of carbon coated alumina supports for the preparation of highly active ruthenium catalysts for ammonia synthesis,” App. Catal. 62, L19 (1990).
20.G. Zhao, Z. Xu, and K. Sun, “Hierarchical porous Co3O4 films as cathode catalysts of rechargeable Li–O2 batteries,” J. Mater. Chem. A 1, 12862 (2013).
21.P. Lavela, G. F. Ortiz, J. L. Tirado, E. Zhecheva, R. Stoyanova, and S. Ivanova, “High-performance transition metal mixed oxides in conversion electrodes: A combined spectroscopic and electrochemical study,” J. Phys. Chem. C 111, 1423814246 (2007).
22.A. K. Rai, J. Gim, T. V. Thi, D. Ahn, S. J. Cho, and J. Kim, “High rate capability and long cycle stability of Co3O4/CoFe2O4 nanocomposite as an anode material for high-performance secondary lithium ion batteries,” J. Phys. Chem. C 118, 1123411243 (2014).
23.J. R. Goldstein and A. C. C. Tseung, “The kinetics of hydrogen peroxide decomposition catalyzed by cobalt-iron oxides,” J. Catal. 32, 452465 (1974).
24.N. Bahlawane, P. H. T. Ngamou, V. Vannier, T. Kottke, J. Heberle, and K. Kohse-Höinghaus, “Tailoring the properties and the reactivity of the spinel cobalt oxide,” Phys. Chem. Chem. Phys. 11, 9224 (2009).
25.L. Martín-García, A. Quesada, C. Munuera, J. F. Fernández, M. García-Hernández, M. Foerster, L. Aballe, and J. de la Figuera, “Atomically flat ultrathin cobalt ferrite islands,” Adv. Mater. 27, 59555960 (2015).
26.J. B. Moussy, “From epitaxial growth of ferrite thin films to spin-polarized tunnelling,” J. Phys. D: Appl. Phys. 46, 143001 (2013).
27.R. Bliem, E. McDermott, P. Ferstl, M. Setvin, O. Gamba, M. Schneider, M. Schmid, U. Diebold, P. Blaha, L. Hammer, and G. Parkinson, “Surface cation vacancy stabilization of the magnetite (001) surface,” Science 346, 12151218 (2014).
28.L. Aballe, M. Foerster, E. Pellegrin, J. Nicolas, and S. Ferrer, “The ALBA spectroscopic LEEM-PEEM experimental station: Layout and performance,” J. Synchrotron Radiat. 22, 745752 (2015).
29.K. F. McCarty and J. de la Figuera, “Low-energy electron microscopy,” in Surface Science Techniques, Springer Series in Surface Sciences (Springer, Berlin, Heidelberg, 2013), Vol. 51, p. 531.
30.W. Kuch and C. M. Schneider, “Magnetic dichroism in valence band photoemission,” Rep. Prog. Phys. 64, 147204 (2001).
31.M. Monti, B. Santos, A. Mascaraque, O. Rodríguez de la Fuente, M. A. Niño, T. O. Mentes, A. Locatelli, K. F. McCarty, J. F. Marco, and J. de la Figuera, “Magnetism in nanometer-thick magnetite,” Phys. Rev. B 85, 020404 (2012).
32.C. T. Chen, Y. U. Idzerda, H.-J. Lin, N. V. Smith, G. Meigs, E. Chaban, G. H. Ho, E. Pellegrin, and F. Sette, “Experimental confirmation of the x-ray magnetic circular dichroism sum rules for iron and cobalt,” Phys. Rev. Lett. 75, 152155 (1995).
33.P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, and J. Luitz, WIEN2K, An Augmented Plane Wave+Local Orbitals Program for Calculating Crystal Properties (Karlheinz Schwarz, Technical Universität Wien, Austria, 2001).
34.J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77, 38653868 (1996).
35.J. de la Figuera, L. Vergara, A. T. N’Diaye, A. Quesada, and A. K. Schmid, “Micromagnetism in (001) magnetite by spin-polarized low-energy electron microscopy,” Ultramicroscopy 130, 77 (2013).
36.L. Martín-García, R. Gargallo-Caballero, M. Monti, M. Foerster, J. F. Marco, L. Aballe, and J. de la Figuera, “Spin and orbital magnetic moment of reconstructed magnetite (001),” Phys. Rev. B 91, 020408 (2015).
37.E. Pellegrin, M. Hagelstein, S. Doyle, H. Moser, J. Fuchs, D. Vollath, S. Schuppler, M. James, S. Saxena, L. Niesen, O. Rogojanu, G. Sawatzky, C. Ferrero, M. Borowski, O. Tjernberg, and N. Brookes, “Characterization of nanocrystalline γ-Fe2O3 with synchrotron radiation techniques,” Phys. Status Solidi B 215, 797801 (1999).<797::AID-PSSB797>3.0.CO;2-D
38.J. A. Moyer, C. A. F. Vaz, D. A. Arena, D. Kumah, E. Negusse, and V. E. Henrich, “Magnetic structure of Fe-doped CoFe2O4 probed by x-ray magnetic spectroscopies,” Phys. Rev. B 84, 054447 (2011).
39.R. Bliem, J. Pavelec, O. Gamba, E. McDermott, Z. Wang, S. Gerhold, M. Wagner, J. Osiecki, K. Schulte, M. Schmid, P. Blaha, U. Diebold, and G. Parkinson, “Adsorption and incorporation of transition metals at the magnetite Fe3O4(001) surface,” Phys. Rev. B 92, 075440 (2015).
40.G. F. M. Gomes, T. E. P. Bueno, D. E. Parreiras, G. J. P. Abreu, A. de Siervo, J. C. Cezar, H.-D. Pfannes, and R. Paniago, “Magnetic moment of Fe3O4 films with thicknesses near the unit-cell size,” Phys. Rev. B 90, 134422 (2014).
41.Z. Novotný, G. Argentero, Z. Wang, M. Schmid, U. Diebold, and G. S. Parkinson, “Ordered array of single adatoms with remarkable thermal stability: Au/Fe3O4(001),” Phys. Rev. Lett. 108, 216103 (2012).
42.G. S. Parkinson, Z. Novotny, G. Argentero, M. Schmid, J. Pavelec, R. Kosak, P. Blaha, and U. Diebold, “Carbon monoxide-induced adatom sintering in a Pd-Fe3O4 model catalyst,” Nat. Mater. 12, 724728 (2013).
43.R. Bliem, R. Kosak, L. Perneczky, Z. Novotny, O. Gamba, D. Fobes, Z. Mao, M. Schmid, P. Blaha, U. Diebold, and G. S. Parkinson, “Cluster nucleation and growth from a highly supersaturated adatom phase: Silver on magnetite,” ACS Nano 8, 75317537 (2014).
44.R. Dieckmann and H. Schmalzried, “Defects and cation diffusion in magnetite (II),” Ber. Bun. Phys. Chem. 81, 414419 (1977).

Data & Media loading...


Article metrics loading...



A novel approach to incorporate cobalt atoms into a magnetite single crystal is demonstrated by a combination of x-ray spectro-microscopy, low-energy electron diffraction, and density-functional theory calculations. Co is deposited at room temperature on the reconstructed magnetite (001) surface filling first the subsurface octahedral vacancies and then occupying adatom sites on the surface. Progressive annealing treatments at temperatures up to 733 K diffuse the Co atoms into deeper crystal positions, mainly into octahedral ones with a marked inversion level. The oxidation state, coordination, and magnetic moments of the cobalt atoms are followed from their adsorption to their final incorporation into the bulk, mostly as octahedral Co2+. This precise control of the near-surface Co atoms location opens up the way to accurately tune the surface physical and magnetic properties of mixed spinel oxides.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd