Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/144/9/10.1063/1.4943045
1.
1.L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Pergamon Press, 1963).
2.
2.J. L. Lebowitz and E. Rubin, Phys. Rev. 131, 2381 (1963).
http://dx.doi.org/10.1103/PhysRev.131.2381
3.
3.P. Résibois and H. T. Davis, Physica 30, 1077 (1964).
http://dx.doi.org/10.1016/0031-8914(64)90099-0
4.
4.J. Mercer and T. Keyes, J. Stat. Phys. 32, 35 (1983).
http://dx.doi.org/10.1007/BF01009418
5.
5.L. Bocquet, J. Piasecki, and J.-P. Hansen, J. Stat. Phys. 76, 505 (1994).
http://dx.doi.org/10.1007/BF02188673
6.
6.I. Hanasaki, R. Nagura, and S. Kawano, J. Chem. Phys. 142, 104301 (2015).
http://dx.doi.org/10.1063/1.4913748
7.
7.M. J. Nuevo, J. J. Morales, and D. M. Heyes, Phys. Rev. E 51, 2026 (1995).
http://dx.doi.org/10.1103/PhysRevE.51.2026
8.
8.F. Ould-Kaddour and D. Levesque, Phys. Rev. E 63, 011205 (2000).
http://dx.doi.org/10.1103/PhysRevE.63.011205
9.
9.J. R. Schmidt and J. L. Skinner, J. Chem. Phys. 119, 8062 (2003).
http://dx.doi.org/10.1063/1.1610442
10.
10.M. Cappelezzo, C. A. Capellari, S. H. Pezzin, and L. A. F. Coelho, J. Chem. Phys. 126, 224516 (2007).
http://dx.doi.org/10.1063/1.2738063
11.
11.F. Ould-Kaddour and D. Lqvesque, J. Chem. Phys. 127, 154514 (2007).
http://dx.doi.org/10.1063/1.2794753
12.
12.Z. Li, Phys. Rev. E 80, 061204 (2009).
http://dx.doi.org/10.1103/PhysRevE.80.061204
13.
13.T. J. Murphy and J. L. Aguirre, J. Chem. Phys. 57, 2098 (1972).
http://dx.doi.org/10.1063/1.1678535
14.
14.C. J. Wienken, P. Baaske, U. Rothbauer, D. Braun, and S. Duhr, Nat. Commun. 1, 1 (2010).
http://dx.doi.org/10.1038/ncomms1093
15.
15.A. Würger, Rep. Prog. Phys. 73, 126601 (2010).
http://dx.doi.org/10.1088/0034-4885/73/12/126601
16.
16.A. Majee and A. Würger, Phys. Rev. Lett. 108, 118301 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.118301
17.
17.K. A. Eslahian, A. Majee, M. Maskos, and A. Würger, Soft Matter 10, 1931 (2014).
http://dx.doi.org/10.1039/c3sm52779d
18.
18.I. Hanasaki, Y. Isono, B. Zheng, Y. Uraoka, and I. Yamashita, Jpn. J. Appl. Phys., Part 1 50, 065201 (2011).
http://dx.doi.org/10.7567/JJAP.50.065201
19.
19.S. Kawano and F. Nishimura, Jpn. J. Appl. Phys., Part 1 44, 4218 (2005).
http://dx.doi.org/10.1143/JJAP.44.4218
20.
20.K. Doi, A. Yano, and S. Kawano, J. Phys. Chem. B 119, 228 (2015).
http://dx.doi.org/10.1021/jp5071538
21.
21.D. Branton, D. W. Deamer, A. Marziali, H. Bayley, S. A. Benner, T. Butler, M. Di Ventra, S. Garaj, A. Hibbs, X. Huang et al., Nat. Biotechnol. 26, 1146 (2008).
http://dx.doi.org/10.1038/nbt.1495
22.
22.M. Tsutsui, M. Taniguchi, and T. Kawai, Nat. Commun. 1, 138 (2010).
http://dx.doi.org/10.1038/ncomms1141
23.
23.H. Daiguji, P. Yang, and A. Majumdar, Nano Lett. 4, 137 (2004).
http://dx.doi.org/10.1021/nl0348185
24.
24.J. Hwang and H. Daiguji, Langmuir 29, 2406 (2013).
http://dx.doi.org/10.1021/la304423p
25.
25.G. A. Voth, Coarse-Graining of Condensed Phase and Biomolecular Systems (CRC Press, 2009).
26.
26.I. Hanasaki and A. Nakatani, J. Chem. Phys. 124, 144708 (2006).
http://dx.doi.org/10.1063/1.2187971
27.
27.I. Hanasaki and A. Nakatani, J. Chem. Phys. 124, 174714 (2006).
http://dx.doi.org/10.1063/1.2194540
28.
28.I. Hanasaki, A. Nakamura, T. Yonebayashi, and S. Kawano, J. Phys.: Condens. Matter 20, 015213 (2008).
http://dx.doi.org/10.1088/0953-8984/20/01/015213
29.
29.M. Patra and M. Karttunen, J. Comput. Chem. 25, 678 (2004).
http://dx.doi.org/10.1002/jcc.10417
30.
30.I. Hanasaki and A. Nakatani, Modell. Simul. Mater. Sci. Eng. 14, S9 (2006).
http://dx.doi.org/10.1088/0965-0393/14/5/S02
31.
31.J. Kirkwood, J. Chem. Phys. 14, 180 (1946).
http://dx.doi.org/10.1063/1.1724117
32.
32.P. Mazur and I. Oppenheim, Physica 50, 241 (1970).
http://dx.doi.org/10.1016/0031-8914(70)90005-4
33.
33.R. M. Mazo, J. Chem. Phys. 54, 3712 (1971).
http://dx.doi.org/10.1063/1.1675416
34.
34.T. S. Chow and J. J. Hermans, J. Chem. Phys. 57, 1799 (1972).
http://dx.doi.org/10.1063/1.1678480
35.
35.S. Harris, J. Chem. Phys. 59, 3439 (1973).
http://dx.doi.org/10.1063/1.1680497
36.
36.P. Español and J. Zúñiga, J. Chem. Phys. 98, 574 (1993).
http://dx.doi.org/10.1063/1.464599
37.
37.L. Bocquet, J.-P. Hansen, and J. Piasecki, J. Stat. Phys. 89, 321 (1997).
http://dx.doi.org/10.1007/BF02770768
38.
38.F. Ould-Kaddour and D. Levesque, J. Chem. Phys. 118, 7888 (2003).
http://dx.doi.org/10.1063/1.1563593
39.
39.J. Petravic, J. Chem. Phys. 129, 094503 (2008).
http://dx.doi.org/10.1063/1.2972977
40.
40.C. D. Bruzewicz, J. M. Sage, and J. Chiaverini, Phys. Rev. A 91, 041402(R) (2015).
http://dx.doi.org/10.1103/PhysRevA.91.041402
41.
41.R. P. de Groote, I. Budincevic, J. Billowes, M. L. Bissell, T. E. Cocolios, G. J. Farooq-Smith, V. N. Fedosseev, K. T. Flanagan, S. Franchoo, R. F. Garcia Ruiz et al., Phys. Rev. Lett. 115, 132501 (2015).
http://dx.doi.org/10.1103/PhysRevLett.115.132501
http://aip.metastore.ingenta.com/content/aip/journal/jcp/144/9/10.1063/1.4943045
Loading
/content/aip/journal/jcp/144/9/10.1063/1.4943045
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/144/9/10.1063/1.4943045
2016-03-04
2016-12-03

Abstract

Friction coefficient of the Langevin equation and drag of spherical macroscopic objects in steady flow at low Reynolds numbers are usually regarded as equivalent. We show that the microscopic friction can be different from the macroscopic drag when the mass is taken into account for particles with comparable scale to the surrounding fluid molecules. We illustrate it numerically by molecular dynamics simulation of chloride ion in water. Friction variation by the atomistic mass effect beyond the Langevin regime can be of use in the drag reduction technology as well as the electro or thermophoresis.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/144/9/1.4943045.html;jsessionid=RHMq7W2vWVdc0kIiaJpryt4N.x-aip-live-02?itemId=/content/aip/journal/jcp/144/9/10.1063/1.4943045&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/144/9/10.1063/1.4943045&pageURL=http://scitation.aip.org/content/aip/journal/jcp/144/9/10.1063/1.4943045'
Right1,Right2,Right3,