Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/145/1/10.1063/1.4954939
1.
R. M. Ormerod, Chem. Soc. Rev. 32, 17 (2003).
http://dx.doi.org/10.1039/b105764m
2.
X. Jiang, Q. Xu, Y. Shi, X. Li, W. Zhou, H. Xu, and Q. Zhang, Int. J. Hydrogen Energy 39, 10817 (2014).
http://dx.doi.org/10.1016/j.ijhydene.2014.04.203
3.
L. Malavasi, C. A. J. Fisher, and M. S. Islam, Chem. Soc. Rev. 39, 4370 (2010).
http://dx.doi.org/10.1039/b915141a
4.
S. M. Haile, Acta Mater. 51, 5981 (2003).
http://dx.doi.org/10.1016/j.actamat.2003.08.004
5.
R. Doshi, V. Richards, and J. Carter, J. Electrochem. Soc. 146, 1273 (1999).
http://dx.doi.org/10.1149/1.1391758
6.
S. Tao and J. T. S. Irvine, Nat. Mater. 2, 320 (2003).
http://dx.doi.org/10.1038/nmat871
7.
J. C. Ruiz-Morales, J. Canales-Vázquez, C. Savaniu, D. Marrero-López, W. Zhou, and J. T. S. Irvine, Nature 439, 568 (2006).
http://dx.doi.org/10.1038/nature04438
8.
T. Hibino, A. Hashimoto, T. Inoue, J. Tokuno, S. Yoshida, and S. Mitsuru, Science 288, 2031 (2000).
http://dx.doi.org/10.1126/science.288.5473.2031
9.
I. Fullarton, J. Jacobs, H. Van Benthem et al., Ionics (Kiel) 1, 51 (1995).
http://dx.doi.org/10.1007/BF02426008
10.
Y.-L. Lee, J. Kleis, J. Rossmeisl, and D. Morgan, Phys. Rev. B 80, 224101 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.224101
11.
S. J. Skinner, Int. J. Inorg. Mater. 3, 113 (2001).
http://dx.doi.org/10.1016/S1466-6049(01)00004-6
12.
F. W. Poulsen, Solid State Ionics 129, 145 (2000).
http://dx.doi.org/10.1016/S0167-2738(99)00322-7
13.
S. P. Jiang, J. Mater. Sci. 43, 6799 (2008).
http://dx.doi.org/10.1007/s10853-008-2966-6
14.
A. Thursfield and I. S. Metcalfe, J. Membr. Sci. 288, 175 (2007).
http://dx.doi.org/10.1016/j.memsci.2006.11.015
15.
T. Arima and Y. Tokura, J. Phys. Soc. Jpn. 64, 2488 (1995).
http://dx.doi.org/10.1143/JPSJ.64.2488
16.
T. Arima, Y. Tokura, and J. Torrance, Phys. Rev. B 48, 15 (1993).
http://dx.doi.org/10.1103/PhysRevA.48.R15
17.
M. Cherry, M. S. Islam, and C. R. A. Catlow, J. Solid State Chem. 118, 125 (1995).
http://dx.doi.org/10.1006/jssc.1995.1320
18.
Y. A. Mastrikov, E. Heifets, E. A. Kotomin, and J. Maier, Surf. Sci. 603, 326 (2009).
http://dx.doi.org/10.1016/j.susc.2008.11.034
19.
S. M. Woodley, J. D. Gale, P. D. Battle, and C. R. A. Catlow, J. Chem. Phys. 119, 9737 (2003).
http://dx.doi.org/10.1063/1.1615759
20.
M. J. Koponen, M. Suvanto, K. Kallinen, T.-J. J. Kinnunen, M. Härkönen, and T. A. Pakkanen, Solid State Sci. 8, 450 (2006).
http://dx.doi.org/10.1016/j.solidstatesciences.2005.11.008
21.
L. E. Smart and A. E. Moore, Solid State Chemistry: An Introduction, 4th ed. (CRC Press, 2012).
22.
M. Dine El Hannani, D. Rached, M. Rabah, R. Khenata, N. Benayad, M. Hichour, and A. Bouhemadou, Mater. Sci. Semicond. Process. 11, 81 (2008).
http://dx.doi.org/10.1016/j.mssp.2009.04.002
23.
A. Orera and P. R. Slater, Chem. Mater. 22, 675 (2010).
http://dx.doi.org/10.1021/cm902687z
24.
J. B. Goodenough, Annu. Rev. Mater. Res. 33, 91 (2003).
http://dx.doi.org/10.1146/annurev.matsci.33.022802.091651
25.
M. A. Peña and J. L. Fierro, Chem. Rev. 101, 1981 (2001).
http://dx.doi.org/10.1021/cr980129f
26.
Y. Wang, X. Zhao, S. , X. Meng, Y. Zhang, B. Yu, X. Li, Y. Sui, J. Yang, C. Fu, and Y. Ji, Ceram. Int. 40, 11343 (2014).
http://dx.doi.org/10.1016/j.ceramint.2014.03.113
27.
J. A. Kilner and M. Burriel, Annu. Rev. Mater. Res. 44, 365 (2014).
http://dx.doi.org/10.1146/annurev-matsci-070813-113426
28.
J. Van Herle, A. J. J. Mcevoy, and K. R. Thampi, Electrochim. Acta 41, 1447 (1996).
http://dx.doi.org/10.1016/0013-4686(95)00393-2
29.
R. A. De Souza, J. A. Kilner, and J. F. Walker, Mater. Lett. 43, 43 (2000).
http://dx.doi.org/10.1016/S0167-577X(99)00228-1
30.
T. Ishihara, J. Electrochem. Soc. 145, 3177 (1998).
http://dx.doi.org/10.1149/1.1838783
31.
M. Arshad Farhan and M. Javed Akhtar, J. Phys.: Condens. Matter 22, 075402 (2010).
http://dx.doi.org/10.1088/0953-8984/22/7/075402
32.
K. H. Jung, S. Choi, H.-H. Park, and W.-S. Seo, Curr. Appl. Phys. 11, S260 (2011).
http://dx.doi.org/10.1016/j.cap.2010.12.032
33.
M. C. Pearce and V. Thangadurai, Ionics 14, 483 (2008).
http://dx.doi.org/10.1007/s11581-008-0240-1
34.
C. Xia, W. Rauch, F. Chen, and M. Liu, Solid State Ionics 149, 11 (2002).
http://dx.doi.org/10.1016/S0167-2738(02)00131-5
35.
M. Liu, M. E. Lynch, K. Blinn, F. M. Alamgir, and Y. Choi, Mater. Today 14, 534 (2011).
http://dx.doi.org/10.1016/S1369-7021(11)70279-6
36.
J. Fleig, Annu. Rev. Mater. Res. 33, 361 (2003).
http://dx.doi.org/10.1146/annurev.matsci.33.022802.093258
37.
H. Tu and Y. Takeda, Solid State Ionics 100, 283 (1997).
http://dx.doi.org/10.1016/S0167-2738(97)00360-3
38.
S. Pawar, K. Shinde, A. Bhosale, and S. Pawar, J. Mater. 2013, 987328 (2013).
http://dx.doi.org/10.1155/2013/987328
39.
N. K. Gaur and R. Thakur, Metall. Mater. Trans. A 44, 5876 (2013).
http://dx.doi.org/10.1007/s11661-013-1942-1
40.
N. B. Ivanova, N. V. Kazak, C. R. Michel, a. D. Balaev, and S. G. Ovchinnikov, Phys. Solid State 49, 2126 (2007).
http://dx.doi.org/10.1134/S1063783407110182
41.
K. Knížek, Z. Jirák, J. Hejtmánek, M. Veverka, M. Maryško, G. Maris, and T. T. M. Palstra, Eur. Phys. J. B 47, 213 (2005).
http://dx.doi.org/10.1140/epjb/e2005-00320-3
42.
P.-H. Xiang, S. Asanuma, H. Yamada, H. Sato, I. H. Inoue, H. Akoh, A. Sawa, M. Kawasaki, and Y. Iwasa, Adv. Mater 25, 2158 (2013).
http://dx.doi.org/10.1002/adma.201204505
43.
Z. Jirák, J. Hejtmánek, K. Knížek, P. Novák, E. Šantavá, and H. Fujishiro, J. Appl. Phys. 115, 17E118 (2014).
http://dx.doi.org/10.1063/1.4862946
44.
J. H. Kuo and H. U. Anderson, J. Solid State Chem. 83, 52 (1989).
http://dx.doi.org/10.1016/0022-4596(89)90053-4
45.
R. A. De Souza, M. S. Islam, and E. Ivers-Tiffée, J. Mater. Chem. 9, 1621 (1999).
http://dx.doi.org/10.1039/a901512d
46.
J. Nowotny and M. Rekas, J. Am. Ceram. Soc. 81, 67 (1998).
http://dx.doi.org/10.1111/j.1151-2916.1998.tb02297.x
47.
A. A. Leontiou, A. K. Ladavos, T. V Bakas, T. C. Vaimakis, and P. J. Pomonis, Appl. Catal., A 241, 143 (2003).
http://dx.doi.org/10.1016/S0926-860X(02)00458-1
48.
J. Mizusaki, N. Mori, H. Takai, and Y. Yonemura, Solid State Ionics 129, 163 (2000).
http://dx.doi.org/10.1016/S0167-2738(99)00323-9
49.
T. I. Arbuzova, V. I. Voronin, B. a. Gizhevskiĭ, S. V. Naumov, and V. L. Arbuzov, Phys. Solid State 52, 1217 (2010).
http://dx.doi.org/10.1134/S1063783410060168
50.
P. J. Shen, X. Liu, H. H. Wang, and W. Z. Ding, Solid State Sci. 13, 276 (2011).
http://dx.doi.org/10.1016/j.solidstatesciences.2010.10.016
51.
M. Pavone, A. B. Muñoz-Garcia, A. M. Ritzmann, and E. A. Carter, J. Phys. Chem. C 118, 13346 (2014).
http://dx.doi.org/10.1021/jp500352h
52.
E. A. Kotomin, Y. A. Mastrikov, M. M. Kuklja, R. Merkle, A. Roytburd, and J. Maier, Solid State Ionics 188, 1 (2011).
http://dx.doi.org/10.1016/j.ssi.2010.10.011
53.
G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).
http://dx.doi.org/10.1103/PhysRevB.47.558
54.
G. Kresse and J. Hafner, Phys. Rev. B 49, 14251 (1994).
http://dx.doi.org/10.1103/PhysRevB.49.14251
55.
G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).
http://dx.doi.org/10.1016/0927-0256(96)00008-0
56.
G. Kresse and J. Furthmüller, Phys. Rev. B: Condens. Matter Mater. Phys. 54, 11169 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.11169
57.
P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.17953
58.
J. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
59.
J. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 78, 1396 (1997).
http://dx.doi.org/10.1103/PhysRevLett.78.1396
60.
P. E. Blöchl, O. Jepsen, and O. K. Andersen, Phys. Rev. B 49, 16223 (1994).
http://dx.doi.org/10.1103/PhysRevB.49.16223
61.
H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).
http://dx.doi.org/10.1103/PhysRevB.13.5188
62.
R. F. W. Bader, Atoms in Molecules: A Quantum Theory (Oxford University Press, Oxford, 1990).
63.
G. Henkelman, A. Arnaldsson, and H. Jónsson, Comput. Mater. Sci. 36, 354 (2006).
http://dx.doi.org/10.1016/j.commatsci.2005.04.010
64.
T. Geng, Z. Han, and S. Zhuang, Phys. B: Condens. Matter 405, 3714 (2010).
http://dx.doi.org/10.1016/j.physb.2010.05.072
65.
P. Ravindran, A. Kjekshus, H. Fjellvåg, A. Delin, and O. Eriksson, Phys. Rev. B 65, 064445 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.064445
66.
P. Ravindran, R. Vidya, H. Fjellvåg, and A. Kjekshus, J. Cryst. Growth 268, 554 (2004).
http://dx.doi.org/10.1016/j.jcrysgro.2004.04.090
67.
S. Dudarev, G. Botton, and S. Savrasov, Phys. Rev. B 57, 1505 (1998).
http://dx.doi.org/10.1103/PhysRevB.57.1505
68.
A. M. Ritzmann, M. Pavone, A. B. Muñoz-García, J. A. Keith, and E. A. Carter, J. Mater. Chem. A 2, 8060 (2014).
http://dx.doi.org/10.1039/C4TA00801D
69.
S. Zhang, N. Han, and X. Tan, RSC Adv. 5, 760 (2015).
http://dx.doi.org/10.1039/C4RA12563K
70.
Z. Alahmed and H. Fu, Phys. Rev. B 76, 224101 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.224101
71.
E. Heifets, S. Piskunov, E. A. Kotomin, Y. F. Zhukovskii, and D. E. Ellis, Phys. Rev. B 75, 115417 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.115417
72.
A. M. Ritzmann and A. B. Muñoz-García, Chem. Mater. 25, 3011 (2013).
http://dx.doi.org/10.1021/cm401052w
73.
P. G. Sundell, M. E. Björketun, and G. Wahnström, Phys. Rev. B 73, 104112 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.104112
74.
H. Raebiger, S. Lany, and A. Zunger, Phys. Rev. B 76, 045209 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.045209
75.
T. Tanaka, K. Matsunaga, Y. Ikuhara, and T. Yamamoto, Phys. Rev. B 68, 205213 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.205213
76.
C. G. Van De Walle and J. Neugebauer, J. Appl. Phys. 95, 3851 (2004).
http://dx.doi.org/10.1063/1.1682673
77.
D. O. Scanlon, J. Buckeridge, C. R. A. Catlow, and G. W. Watson, J. Mater. Chem. C 2, 3429 (2014).
http://dx.doi.org/10.1039/c4tc00096j
78.
C. Freysoldt, B. Grabowski, T. Hickel, J. Neugebauer, G. Kresse, A. Janotti, and C. G. Van De Walle, Rev. Mod. Phys. 86, 253 (2014).
http://dx.doi.org/10.1103/RevModPhys.86.253
79.
J. Buckeridge, D. O. Scanlon, A. Walsh, and C. R. A. Catlow, Comput. Phys. Commun. 185, 330 (2014).
http://dx.doi.org/10.1016/j.cpc.2013.08.026
80.
S. W. Baek, J. H. Kim, and J. Bae, Solid State Ionics 179, 1570 (2008).
http://dx.doi.org/10.1016/j.ssi.2007.12.010
81.
M. W. Chase, NIST-JANAF Thermochemical Tables (American Chemical Society, 1998).
82.
A. Wold and R. Ward, J. Am. Chem. Soc. 76, 1029 (1954).
http://dx.doi.org/10.1021/ja01633a031
83.
R. Scurtu, S. Somacescu, J. M. Calderon-Moreno, D. Culita, I. Bulimestru, N. Popa, A. Gulea, and P. Osiceanu, J. Solid State Chem. 210, 53 (2014).
http://dx.doi.org/10.1016/j.jssc.2013.10.044
84.
T. Saitoh, T. Mizokawa, A. Fujimori, and M. Abbate, Phys. Rev. B 55, 4257 (1997).
http://dx.doi.org/10.1103/PhysRevB.55.4257
85.
F. A. Kröger and H. J. Vink, Solid State Phys. 3, 307 (1956).
http://dx.doi.org/10.1016/S0081-1947(08)60135-6
86.
A. Alkauskas, P. Broqvist, and A. Pasquarello, Phys. Status Solidi Basic Res. 248, 775 (2011).
http://dx.doi.org/10.1002/pssb.201046195
87.
J. Perez-Cacho, J. Blasco, J. Garcia, and R. Sanchez, J. Solid State Chem. 150, 145 (2000).
http://dx.doi.org/10.1006/jssc.1999.8570
88.
J. H. Kim, M. Cassidy, J. T. S. Irvine, and J. Bae, J. Electrochem. Soc. 156, B682 (2009).
http://dx.doi.org/10.1149/1.3110989
89.
H. Shimada, T. Yamaguchi, T. Suzuki, H. Sumi, K. Hamamoto, and Y. Fujishiro, J. Power Sources 302, 308 (2016).
http://dx.doi.org/10.1016/j.jpowsour.2015.10.082
90.
C. Persson, Y. J. Zhao, S. Lany, and A. Zunger, Phys. Rev. B: Condens. Matter Mater. Phys. 72, 1 (2005).
http://dx.doi.org/10.1103/physrevb.72.035211
http://aip.metastore.ingenta.com/content/aip/journal/jcp/145/1/10.1063/1.4954939
Loading
/content/aip/journal/jcp/145/1/10.1063/1.4954939
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/145/1/10.1063/1.4954939
2016-07-01
2016-09-24

Abstract

Doped LaMnO and SmCoO are important solid oxide fuel cell cathode materials. The main difference between these two perovskites is that SmCoO has proven to be a more efficient cathode material than LaMnO at lower temperatures. In order to explain the difference in efficiency, we need to gain insight into the materials’ properties at the atomic level. However, while LaMnO has been widely studied, studies on SmCoO are rare. Hence, in this paper, we perform a comparative DFT + U study of the structural, electronic, and magnetic properties of these two perovskites. To that end, we first determined a suitable Hubbard parameter for the Co –electrons to obtain a proper description of SmCoO that fully agrees with the available experimental data. We next evaluated the impact of oxygen and cation vacancies on the geometry, electronic, and magnetic properties. Oxygen vacancies strongly alter the electronic and magnetic structures of SmCoO, but barely affect LaMnO. However, due to their high formation energy, their concentrations in the material are very low and need to be induced by doping. Studying the cation vacancy concentration showed that the formation of cation vacancies is less energetically favorable than oxygen vacancies and would thus not markedly influence the performance of the cathode.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/145/1/1.4954939.html;jsessionid=-fOAI1ZQDR0QzBG4j2s0trgh.x-aip-live-03?itemId=/content/aip/journal/jcp/145/1/10.1063/1.4954939&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/145/1/10.1063/1.4954939&pageURL=http://scitation.aip.org/content/aip/journal/jcp/145/1/10.1063/1.4954939'
Right1,Right2,Right3,