Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/145/10/10.1063/1.4961682
1.
C. G. Gray and K. E. Gubbins, Theory of Molecular Fluids (Clarendon Press, Oxford, 1984).
2.
R. J. Sadus, Molecular Simulation of Fluids: Theory, Algorithms and Object-Orientation (Elsevier, Amsterdam, 1999).
3.
M. E. Tuckerman, Statistical Mechanics: Theory and Molecular Simulation (Oxford University Press, Oxford, 2010).
4.
J.-P. Hansen and J.-J. Weis, Phys. Rev. 188, 314 (1969).
http://dx.doi.org/10.1103/PhysRev.188.314
5.
E. Wigner, Phys. Rev. 40, 749 (1932).
http://dx.doi.org/10.1103/PhysRev.40.749
6.
R. Eggenberger, S. Gerber, H. Huber, and M. Welker, Mol. Phys. 82, 689 (1994).
http://dx.doi.org/10.1080/00268979400100494
7.
K. Leonhard and U. K. Deiters, Mol. Phys. 98, 1603 (2000).
http://dx.doi.org/10.1080/00268970009483367
8.
P. S. Vogt, R. Liapine, B. Kirchner, A. J. Dyson, H. Huber, G. Marcelli, and R. J. Sadus, Phys. Chem. Chem. Phys. 3, 1297 (2001).
http://dx.doi.org/10.1039/b008061f
9.
A. E. Nasrabad, R. Laghaei, and U. K. Deiters, J. Chem. Phys. 121, 6423 (2004).
http://dx.doi.org/10.1063/1.1783271
10.
M. Venkatraj, C. Bratschi, H. Huber, and R. J. Gdanitz, Fluid Phase Equilib. 218, 285 (2004).
http://dx.doi.org/10.1016/j.fluid.2004.01.021
11.
L. M. Sesé, Mol. Phys. 78, 1167 (1993).
http://dx.doi.org/10.1080/00268979300100761
12.
E. Ermakova, J. Solca, H. Huber, and D. Marx, Chem. Phys. Lett. 246, 204 (1995).
http://dx.doi.org/10.1016/0009-2614(95)01108-L
13.
J. G. Kirkwood, Phys. Rev. 44, 31 (1933).
http://dx.doi.org/10.1103/PhysRev.44.31
14.
N. Tchouar, M. Benyettou, and F. Ould Kadour, J. Mol. Liq. 122, 69 (2005).
http://dx.doi.org/10.1016/j.molliq.2005.04.005
15.
N. Tchouar, F. Ould-Kaddour, and D. Levesque, J. Chem. Phys. 121, 7326 (2004).
http://dx.doi.org/10.1063/1.1794651
16.
R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals (Dover, Mineola, NY, 2005).
17.
M. Abbaspour and E. K. Goharshadi, Theor. Chem. Acc. 127, 573 (2010).
http://dx.doi.org/10.1007/s00214-010-0751-5
18.
L. Wang and R. J. Sadus, J. Chem. Phys. 125, 144509 (2006).
http://dx.doi.org/10.1063/1.2353117
19.
P. S. Y. Cheung, Mol. Phys. 33, 519 (1977).
http://dx.doi.org/10.1080/00268977700100441
20.
J. L. Lebowitz, J. K. Percus, and L. Verlet, Phys. Rev. 153, 250 (1967).
http://dx.doi.org/10.1103/PhysRev.153.250
21.
R. Lustig, J. Chem. Phys. 100, 3048 (1994).
http://dx.doi.org/10.1063/1.466446
22.
R. Lustig, J. Chem. Phys. 100, 3060 (1994).
http://dx.doi.org/10.1063/1.466447
23.
R. Lustig, J. Chem. Phys. 100, 3068 (1994).
http://dx.doi.org/10.1063/1.466448
24.
R. Lustig, J. Chem. Phys. 109, 8816 (1998).
http://dx.doi.org/10.1063/1.477552
25.
R. Lustig, Mol. Simul. 37, 457 (2011).
http://dx.doi.org/10.1080/08927022.2011.552244
26.
R. Lustig, Mol. Phys. 110, 3041 (2012).
http://dx.doi.org/10.1080/00268976.2012.695032
27.
R. Hellmann, E. Bich, and E. Vogel, Mol. Phys. 106, 133 (2008).
http://dx.doi.org/10.1080/00268970701843147
28.
J. A. Barker, R. A. Fisher, and R. O. Watts, Mol. Phys. 21, 657 (1971).
http://dx.doi.org/10.1080/00268977100101821
29.
G. Marcelli and R. J. Sadus, J. Chem. Phys. 111, 1533 (1999).
http://dx.doi.org/10.1063/1.479412
30.
G. Marcelli and R. J. Sadus, J. Chem. Phys. 112, 6382 (2000).
http://dx.doi.org/10.1063/1.481199
31.
L. M. Sesé, Mol. Phys. 85, 931 (1995).
http://dx.doi.org/10.1080/00268979500101571
32.
P. J. Leonard and J. A. Barker, in Theoretical Chemistry Advances and Perspectives, edited by H. Eyring and D. Henderson (Academic Press, London, 1975), Vol. 1, p. 133.
33.
C. Desgranges and J. Delhommelle, J. Chem. Theory Comput. 11, 5401 (2015).
http://dx.doi.org/10.1021/acs.jctc.5b00693
34.
E. Bich, R. Hellmann, and E. Vogel, Mol. Phys. 106, 1107 (2008).
http://dx.doi.org/10.1080/00268970801964207
35.
M. Abbaspour, E. K. Goharshadi, and M. N. Jorabchi, Fluid Phase Equilib. 291, 117 (2010).
http://dx.doi.org/10.1016/j.fluid.2009.12.024
36.
J. A. Barker, J. Chem. Phys. 61, 3081 (1974).
http://dx.doi.org/10.1063/1.1682464
37.
P. D. Neufeld and R. A. Aziz, J. Chem. Phys. 59, 2234 (1973).
http://dx.doi.org/10.1063/1.1680325
38.
J. A. Barker and A. Pompe, Aust. J. Chem. 21, 1683 (1968).
http://dx.doi.org/10.1071/CH9681683
39.
M. V. Bobetic and J. A. Barker, Phys. Rev. B 2, 4169 (1970).
http://dx.doi.org/10.1103/PhysRevB.2.4169
40.
F. Barocchi, M. Neumann, and M. Zoppi, Phys. Rev. A 31, 4015 (1985).
http://dx.doi.org/10.1103/PhysRevA.31.4015
41.
J. S. Brown, Proc. Phys. Soc. 89, 987 (1966).
http://dx.doi.org/10.1088/0370-1328/89/4/321
42.
L. M. Sesé, Mol. Phys. 74, 177 (1991).
http://dx.doi.org/10.1080/00268979100102151
43.
L. M. Sesé, Mol. Phys. 89, 1783 (1996).
http://dx.doi.org/10.1080/00268979609482574
44.
L. M. Sesé, Mol. Phys. 92, 693 (1997).
http://dx.doi.org/10.1080/002689797169970
45.
P. Kowalczyk, L. Brualla, P. A. Gaudenc, and A. P. Terzykc, Phys. Chem. Chem. Phys. 11, 9182 (2009).
http://dx.doi.org/10.1039/b907165b
46.
L. M. Sesé, Mol. Phys. 81, 1297 (1994).
http://dx.doi.org/10.1080/00268979400100891
47.
F. Calvo, J. P. K. Doye, and D. J. Wales, J. Chem. Phys. 114, 7312 (2001).
http://dx.doi.org/10.1063/1.1359768
48.
V. V. Sychev, Differentsialnye Uravneniya Termodinamiki, 3rd ed. (MEI, Moscow, 2010), (in Russian).
49.
F. H. Stillinger, H. Sakai, and S. Torquato, J. Chem. Phys. 117, 288 (2002).
http://dx.doi.org/10.1063/1.1480863
50.
A. A. Louis, J. Phys.: Condens. Matter 14, 9187 (2002).
http://dx.doi.org/10.1088/0953-8984/14/40/311
51.
G. D’Adamo, A. Pelissetto, and C. Pierleoni, J. Chem. Phys. 138, 234107 (2013).
http://dx.doi.org/10.1063/1.4810881
52.
M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Clarendon Press, Oxford, 1987).
53.
D. Frenkel and B. Smit, Understanding Molecular Simulation: From Algorithms to Applications (Academic Press, 1996).
54.
K. Meier and S. Kabelac, J. Chem. Phys. 124, 064104 (2006).
http://dx.doi.org/10.1063/1.2162889
55.
D. Thirumalai, R. W. Hall, and B. J. Berne, J. Chem. Phys. 81, 2523 (1984).
http://dx.doi.org/10.1063/1.447985
56.
K. Singer and W. Smith, Mol. Phys. 64, 1215 (1988).
http://dx.doi.org/10.1080/00268978800100823
57.
D. Chandler and P. G. Wolynes, J. Chem. Phys. 74, 4078 (1981).
http://dx.doi.org/10.1063/1.441588
58.
D. M. Ceperley and E. L. Pollock, Phys. Rev. B 30, 2555 (1984).
http://dx.doi.org/10.1103/physrevb.30.2555
59.
X.-P. Li and J. Q. Broughton, J. Chem. Phys. 86, 5094 (1987).
http://dx.doi.org/10.1063/1.452653
60.
J. Cao and B. J. Berne, J. Chem. Phys. 91, 6359 (1989).
http://dx.doi.org/10.1063/1.457403
61.
P. A. Fernandes, A. P. Carvalho, and J. P. Prates Ramalho, J. Chem. Phys. 103, 5720 (1995).
http://dx.doi.org/10.1063/1.470554
62.
A. Giansanti and G. Jacucci, J. Chem. Phys. 89, 7454 (1988).
http://dx.doi.org/10.1063/1.455276
63.
W. Janke and T. Sauer, J. Chem. Phys. 107, 5821 (1997).
http://dx.doi.org/10.1063/1.474309
64.
J. A. Barker, J. Chem. Phys. 70, 2914 (1979).
http://dx.doi.org/10.1063/1.437829
65.
M. F. Herman, E. J. Bruskin, and B. J. Berne, J. Chem. Phys. 76, 5150 (1982).
http://dx.doi.org/10.1063/1.442815
66.
K. R. Glaesemann and L. E. Fried, J. Chem. Phys. 116, 5951 (2002).
http://dx.doi.org/10.1063/1.1460861
67.
K. R. Glaesemann and L. E. Fried, J. Chem. Phys. 117, 3020 (2002).
http://dx.doi.org/10.1063/1.1493184
68.
M. Shiga and W. Shinoda, J. Chem. Phys. 123, 134502 (2005).
http://dx.doi.org/10.1063/1.2035078
69.
W. Shinoda and M. Shiga, Phys. Rev. E 71, 041204 (2005).
http://dx.doi.org/10.1103/PhysRevE.71.041204
70.
A. Z. Panagiotopoulos, Mol. Phys. 61, 813 (1987).
http://dx.doi.org/10.1080/00268978700101491
71.
A. Z. Panagiotopoulos, N. Quirke, M. Stapleton, and D. J. Tildesley, Mol. Phys. 63, 527 (1988).
http://dx.doi.org/10.1080/00268978800100361
72.
M. C. Bellissent-Funel, U. Buontempo, A. Filabozzi, C. Petrillo, and F. P. Ricci, Phys. Rev. B 45, 4605 (1992).
http://dx.doi.org/10.1103/PhysRevB.45.4605
73.
V. A. Rabinovich, A. A. Vasserman, V. I. Nedostup, and L. S. Veksler, Thermodynamic Properties of Neon, Argon, Krypton and Xenon (Springer Verlag, Berlin, 1988).
74.
R. J. Sadus, Mol. Phys. 87, 979 (1996).
http://dx.doi.org/10.1080/00268979600100661
75.
B. M. Axilrod and E. Teller, J. Chem. Phys. 11, 299 (1943).
http://dx.doi.org/10.1063/1.1723844
76.
I. Georgescu, S. E. Brown, and V. A. Mandelshtam, J. Chem. Phys. 138, 134502 (2013).
http://dx.doi.org/10.1063/1.4796144
77.
J. de Boer, Physica 14, 139 (1948).
http://dx.doi.org/10.1016/0031-8914(48)90032-9
78.
Q. Wang and J. Karl Johnson, Fluid Phase Equilib. 132, 93 (1997).
http://dx.doi.org/10.1016/S0378-3812(97)00003-4
79.
J. K. Johnson, J. A. Zollweg, and K. E. Gubbins, Mol. Phys. 78, 591 (1993).
http://dx.doi.org/10.1080/00268979300100411
80.
C. Gladun, Cryogenics 6, 27 (1966).
http://dx.doi.org/10.1016/S0011-2275(96)90059-4
81.
R. Eggenberger, S. Gerber, H. Huber, D. Searles, and M. Welker, J. Chem. Phys. 99, 9163 (1993).
http://dx.doi.org/10.1063/1.465530
82.
D. Boda, T. Lukács, J. Liszi, and F. I. Szalai, Fluid Phase Equilib. 119, 1 (1996).
http://dx.doi.org/10.1016/0378-3812(96)02998-6
83.
A. Cuccoli, A. Macchi, M. Neumann, V. Tognetti, and R. Vaia, Phys. Rev. B 45, 2088 (1992).
http://dx.doi.org/10.1103/PhysRevB.45.2088
84.
D. Marx, P. Nielaba, and K. Binder, Int. J. Mod. Phys. C 3, 337 (1992).
http://dx.doi.org/10.1142/S0129183192000270
85.
D. J. Lacks, Phys. Rev. B 56, 13927 (1997).
http://dx.doi.org/10.1103/PhysRevB.56.13927
86.
E. W. Lemmon, M. McLinden, and D. Friend, in NIST Standard Reference Database Number 69, edited by P. L. A. W. Mallard (NIST, Gaithersburg, MD, 2012).
http://aip.metastore.ingenta.com/content/aip/journal/jcp/145/10/10.1063/1.4961682
Loading
/content/aip/journal/jcp/145/10/10.1063/1.4961682
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/145/10/10.1063/1.4961682
2016-09-08
2016-09-30

Abstract

The thermodynamic, structural, and vapor-liquid equilibrium properties of neon are comprehensively studied using , empirical, and semi-classical intermolecular potentials and classical Monte Carlo simulations. Path integral Monte Carlo simulations for isochoric heat capacity and structural properties are also reported for two empirical potentials and one potential. The isobaric and isochoric heat capacities, thermal expansion coefficient, thermal pressure coefficient, isothermal and adiabatic compressibilities, Joule-Thomson coefficient, and the speed of sound are reported and compared with experimental data for the entire range of liquid densities from the triple point to the critical point. Lustig’s thermodynamic approach is formally extended for temperature-dependent intermolecular potentials. Quantum effects are incorporated using the Feynman-Hibbs quantum correction, which results in significant improvement in the accuracy of predicted thermodynamic properties. The new Feynman-Hibbs version of the Hellmann-Bich-Vogel potential predicts the isochoric heat capacity to an accuracy of 1.4% over the entire range of liquid densities. It also predicts other thermodynamic properties more accurately than alternative intermolecular potentials.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/145/10/1.4961682.html;jsessionid=1fq_HAvvMjwXaJ-OVmSH0qRm.x-aip-live-06?itemId=/content/aip/journal/jcp/145/10/10.1063/1.4961682&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/145/10/10.1063/1.4961682&pageURL=http://scitation.aip.org/content/aip/journal/jcp/145/10/10.1063/1.4961682'
Right1,Right2,Right3,