Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/145/10/10.1063/1.4962168
1.
I. Shavitt and R. J. Bartlett, Many-Body Methods in Chemistry and Physics: MBPT and Coupled-Cluster Theory, Cambridge Molecular Science Series (Cambridge University Press, Cambridge, 2009).
2.
R. J. Bartlett and M. Musiał, Rev. Mod. Phys. 79, 291 (2007).
http://dx.doi.org/10.1103/RevModPhys.79.291
3.
A. Karton, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 6, 292 (2016).
http://dx.doi.org/10.1002/wcms.1249
4.
K. A. Peterson, D. Feller, and D. A. Dixon, Theor. Chem. Acc. 131, 1079 (2012).
http://dx.doi.org/10.1007/s00214-011-1079-5
5.
A. Karton, S. Daon, and J. M. L. Martin, Chem. Phys. Lett. 510, 165 (2011).
http://dx.doi.org/10.1016/j.cplett.2011.05.007
6.
D. Feller, K. A. Peterson, and D. A. Dixon, J. Chem. Phys. 129, 204105 (2008).
http://dx.doi.org/10.1063/1.3008061
7.
T. Helgaker, W. Klopper, and D. P. Tew, Mol. Phys. 106, 2107 (2008).
http://dx.doi.org/10.1080/00268970802258591
8.
K. Raghavachari, G. W. Trucks, J. A. Pople, and M. Head-Gordon, Chem. Phys. Lett. 157, 479 (1989).
http://dx.doi.org/10.1016/S0009-2614(89)87395-6
9.
J. D. Watts, J. Gauss, and R. J. Bartlett, J. Chem. Phys. 98, 8718 (1993).
http://dx.doi.org/10.1063/1.464480
10.
A. Karton and J. M. L. Martin, J. Chem. Phys. 136, 124114 (2012).
http://dx.doi.org/10.1063/1.3697678
11.
L. A. Curtiss, P. C. Redfern, and K. Raghavachari, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 1, 810 (2011).
http://dx.doi.org/10.1002/wcms.59
12.
N. DeYonker, T. R. Cundari, and A. K. Wilson, in Advances in the Theory of Atomic Molecular Systems, Progress in Theoretical Chemistry Physics Vol. 19, edited by P. Piecuch, J. Maruani, G. Delgado-Barrio, and S. Wilson (Springer, Netherlands, Dordrecht, 2009), pp. 197224.
13.
J. M. L. Martin, “Computational thermochemistry: A brief overview of quantum mechanical approaches,” Annu. Rep. Comput. Chem. 1, 31 (2005).
http://dx.doi.org/10.1016/S1574-1400(05)01003-0
14.
T. Helgaker, W. Klopper, K. L. Bak, A. Halkier, P. Jørgensen, and J. Olsen, “Highly accurate ab initio computation of thermochemical data,” in Quantum-Mechanical Prediction of Thermochemical Data, Understanding Chemical Reactivity Vol. 22, edited by J. Cioslowski (Kluwer, Dordrecht, 2001), pp. 130.
15.
J. M. L. Martin and S. Parthiban, “W1 and W2 theory and their variants: Thermochemistry in the kJ/mol accuracy range,” in Quantum-Mechanical Prediction of Thermochemical Data, Understanding Chemical Reactivity Vol. 22, edited by J. Cioslowski (Kluwer, Dordrecht, 2001), pp. 3165.
16.
K. Raghavachari, Chem. Phys. Lett. 589, 35 (2013).
http://dx.doi.org/10.1016/j.cplett.2013.08.044
17.
D. A. Dixon, D. Feller, and K. A. Peterson, Annu. Rep. Comput. Chem. 8, 1 (2012).
http://dx.doi.org/10.1016/B978-0-444-59440-2.00001-6
18.
D. Feller, K. A. Peterson, and D. A. Dixon, Mol. Phys. 110, 2381 (2012).
http://dx.doi.org/10.1080/00268976.2012.684897
19.
A. Karton and J. M. L. Martin, J. Chem. Phys. 133, 144102 (2010).
http://dx.doi.org/10.1063/1.3489113
20.
J. M. L. Martin and M. K. Kesharwani, J. Chem. Theory Comput. 10, 2085 (2014).
http://dx.doi.org/10.1021/ct500174q
21.
P. R. Tentscher and J. S. Arey, J. Chem. Theory Comput. 8, 2165 (2012).
http://dx.doi.org/10.1021/ct300194x
22.
To the best of our knowledge, this expression was first coined by T. H. Dunning, Jr. in a lecture series in the late 1990s.
23.
A. Karton, Chem. Phys. Lett. 645, 118 (2016).
http://dx.doi.org/10.1016/j.cplett.2015.12.048
24.
D. W. Schwenke, J. Chem. Phys. 122, 014107 (2005).
http://dx.doi.org/10.1063/1.1824880
25.
E. C. Barnes, G. A. Petersson, D. Feller, and K. A. Peterson, J. Chem. Phys. 129, 194115 (2008).
http://dx.doi.org/10.1063/1.3013140
26.
D. Feller, K. A. Peterson, and J. G. Hill, J. Chem. Phys. 135, 044102 (2011).
http://dx.doi.org/10.1063/1.3613639
27.
D. Feller, J. Chem. Phys. 138, 074103 (2013).
http://dx.doi.org/10.1063/1.4791560
28.
A. Karton, P. R. Taylor, and J. M. L. Martin, J. Chem. Phys. 127, 064104 (2007).
http://dx.doi.org/10.1063/1.2755751
29.
D. Feller, K. A. Peterson, and T. D. Crawford, J. Chem. Phys. 124, 054107 (2006).
http://dx.doi.org/10.1063/1.2137323
30.
M. Heckert, M. Kállay, and J. Gauss, Mol. Phys. 103, 2109 (2005).
http://dx.doi.org/10.1080/00268970500083416
31.
D. Feller, K. A. Peterson, W. A. de Jong, and D. A. Dixon, J. Chem. Phys. 118, 3510 (2003).
http://dx.doi.org/10.1063/1.1532314
32.
K. L. Bak, J. Gauss, P. Jørgensen, J. Olsen, T. Helgaker, and J. F. Stanton, J. Chem. Phys. 114, 65486549 (2001).
http://dx.doi.org/10.1063/1.1357225
33.
D. Feller and K. A. Peterson, J. Chem. Phys. 108, 154 (1998).
http://dx.doi.org/10.1063/1.475370
34.
T. Helgaker, J. Gauss, P. Jørgensen, and J. Olsen, J. Chem. Phys. 106, 6430 (1997).
http://dx.doi.org/10.1063/1.473634
35.
D. Feller and K. A. Peterson, J. Chem. Phys. 126, 114105 (2007).
http://dx.doi.org/10.1063/1.2464112
36.
D. Feller, K. A. Peterson, and D. A. Dixon, J. Phys. Chem. A 114, 613 (2010).
http://dx.doi.org/10.1021/jp908128g
37.
A. Karton, S. Parthiban, and J. M. L. Martin, J. Phys. Chem. A 113, 4802 (2009).
http://dx.doi.org/10.1021/jp8087435
38.
G. Knizia, T. B. Adler, and H.-J. Werner, J. Chem. Phys. 130, 054104 (2009).
http://dx.doi.org/10.1063/1.3054300
39.
M. Heckert, M. Kállay, D. P. Tew, W. Klopper, and J. Gauss, J. Chem. Phys. 125, 044108 (2006).
http://dx.doi.org/10.1063/1.2217732
40.
D. Feller, K. A. Peterson, and J. G. Hill, J. Chem. Phys. 133, 184102 (2010).
http://dx.doi.org/10.1063/1.3491809
41.
H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, M. Schütz, P. Celani, T. Korona, R. Lindh, A. Mitrushenkov, G. Rauhut et al., molpro, version 2012.1, a package of ab initio programs, 2012, see http://www.molpro.net.
42.
H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, and M. Schütz, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2, 242 (2012).
http://dx.doi.org/10.1002/wcms.82
43.
T. H. Dunning, J. Chem. Phys. 90, 1007 (1989).
http://dx.doi.org/10.1063/1.456153
44.
R. A. Kendall, T. H. Dunning, Jr., and R. J. Harrison, J. Chem. Phys. 96, 6796 (1992).
http://dx.doi.org/10.1063/1.462569
45.
T. H. Dunning, K. A. Peterson, and A. K. Wilson, J. Chem. Phys. 114, 9244 (2001).
http://dx.doi.org/10.1063/1.1367373
46.
F. Weigend and R. Ahlrichs, Phys. Chem. Chem. Phys. 7, 3297 (2005).
http://dx.doi.org/10.1039/b508541a
47.
T. B. Adler, G. Knizia, and H.-J. Werner, J. Chem. Phys. 127, 221106 (2007).
http://dx.doi.org/10.1063/1.2817618
48.
K. A. Peterson, T. B. Adler, and H.-J. Werner, J. Chem. Phys. 128, 084102 (2008).
http://dx.doi.org/10.1063/1.2831537
49.
The 14 highly multireference systems, for which the %TAE[(T)] diagnostic is in excess of 10%, are Be2, B2, C, BN(), OF, F2O, FOO, FOOF, Cl2O, ClOO, OClO, O3, S3, and S4. Note that cis-HO3 and trans-HO3 for which %TAE[(T)] = 7.4 and 7.9, respectively, are also included in this subset, see Refs. 3 and 5 for further details. We also exclude two additional beryllium systems, for which not all the considered basis sets are available, and they are BeF2 and BeCl2.
50.
S. Wang and H. F. Schaefer III, J. Chem. Phys. 124, 044303 (2006).
http://dx.doi.org/10.1063/1.2162538
51.
K. B. Wiberg, J. Comput. Chem. 25, 1342 (2003).
http://dx.doi.org/10.1002/jcc.20058
52.
J. M. L. Martin and P. R. Taylor, J. Phys. Chem. 100, 6047 (1996).
http://dx.doi.org/10.1021/jp952471r
53.
Y. Xie, G. E. Scuseria, B. F. Yates, Y. Yamaguchi, and H. F. Schaefer, J. Am. Chem. Soc. 111, 5181 (1989).
http://dx.doi.org/10.1021/ja00196a026
54.
The 35 systems containing second-row elements are AlH, AlH3, AlF, AlF3, AlCl, AlCl3, SiH, SiH4, Si2H6, SiO, SiF, SiH3F, SiF4, PH3, P2, P4, HS, H2S, CS, CS2, SO, SO2, SO3, OCS, S2, S2H, S2O, HCl, CCl2, ClCN, NH2Cl, ClO, HOCl, ClF, and Cl2.
55.
A. Karton, E. Rabinovich, J. M. L. Martin, and B. Ruscic, J. Chem. Phys. 125, 144108 (2006).
http://dx.doi.org/10.1063/1.2348881
56.
N. Sylvetsky, K. A. Peterson, A. Karton, and J. M. L. Martin, J. Chem. Phys. 144, 214101 (2016).
http://dx.doi.org/10.1063/1.4952410
57.
A. Tajti, P. G. Szalay, A. G. Császár, M. Kállay, J. Gauss, E. F. Valeev, B. A. Flowers, J. Vázquez, and J. F. Stanton, J. Chem. Phys. 121, 11599 (2004).
http://dx.doi.org/10.1063/1.1811608
58.
Y. J. Bomble, J. Vázquez, M. Kállay, C. Michauk, P. G. Szalay, A. G. Császár, J. Gauss, and J. F. Stanton, J. Chem. Phys. 125, 064108 (2006).
http://dx.doi.org/10.1063/1.2206789
59.
M. E. Harding, J. Vázquez, B. Ruscic, A. K. Wilson, J. Gauss, and J. F. Stanton, J. Chem. Phys. 128, 114111 (2008).
http://dx.doi.org/10.1063/1.2835612
60.
C. Hättig, W. Klopper, A. Köhn, and D. P. Tew, Chem. Rev. 112, 4 (2012).
http://dx.doi.org/10.1021/cr200168z
61.
L. Kong, F. A. Bischoff, and E. F. Valeev, Chem. Rev. 112, 75 (2012).
http://dx.doi.org/10.1021/cr200204r
62.
S. Ten-no and J. Noga, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2, 114 (2012).
http://dx.doi.org/10.1002/wcms.68
63.
J. G. Hill, K. A. Peterson, G. Knizia, and H.-J. Werner, J. Chem. Phys. 131, 194105 (2009).
http://dx.doi.org/10.1063/1.3265857
64.
D. Feller, K. A. Peterson, and B. Ruscic, Theor. Chem. Acc. 133, 1407 (2013).
http://dx.doi.org/10.1007/s00214-013-1407-z
http://aip.metastore.ingenta.com/content/aip/journal/jcp/145/10/10.1063/1.4962168
Loading
/content/aip/journal/jcp/145/10/10.1063/1.4962168
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/145/10/10.1063/1.4962168
2016-09-12
2016-09-29

Abstract

We examine the basis set convergence of the CCSD(T) method for obtaining the structures of the 108 neutral first- and second-row species in the W4-11 database (with up to five non-hydrogen atoms). This set includes a total of 181 unique bonds: 75 H—X, 49 X—Y, 43 X=Y, and 14 X≡Y bonds (where X and Y are first- and second-row atoms). As reference values, geometries optimized at the CCSD(T)/aug′-cc-pV(6+d)Z level of theory are used. We consider the basis set convergence of the CCSD(T) method with the correlation consistent basis sets cc-pV(+d)Z and aug′-cc-pV(+d)Z ( = D, T, Q, 5) and the Weigend–Ahlrichs def2- ZVPP basis sets ( = T, Q). For each increase in the highest angular momentum present in the basis set, the root-mean-square deviation (RMSD) over the bond distances is decreased by a factor of ∼4. For example, the following RMSDs are obtained for the cc-pV(+d)Z basis sets 0.0196 (D), 0.0050 (T), 0.0015 (Q), and 0.0004 (5) Å. Similar results are obtained for the aug′-cc-pV(+d)Z and def2- ZVPP basis sets. The double-zeta and triple-zeta quality basis sets systematically and significantly overestimate the bond distances. A simple and cost-effective way to improve the performance of these basis sets is to scale the bond distances by an empirical scaling factor of 0.9865 (cc-pV(D+d)Z) and 0.9969 (cc-pV(T+d)Z). This results in RMSDs of 0.0080 (scaled cc-pV(D+d)Z) and 0.0029 (scaled cc-pV(T+d)Z) Å. The basis set convergence of larger basis sets can be accelerated via standard basis-set extrapolations. In addition, the basis set convergence of explicitly correlated CCSD(T)-F12 calculations is investigated in conjunction with the cc-pVZ-F12 basis sets ( = D, T). Typically, one “gains” two angular momenta in the explicitly correlated calculations. That is, the CCSD(T)-F12/cc-pVZ-F12 level of theory shows similar performance to the CCSD(T)/cc-pV(+2)Z level of theory. In particular, the following RMSDs are obtained for the cc-pVZ-F12 basis sets 0.0019 (D) and 0.0006 (T) Å. Overall, the CCSD(T)-F12/cc-pVDZ-F12 level of theory offers a stellar price-performance ratio and we recommend using it when highly accurate reference geometries are needed (e.g., in composite theories such as W4 and HEAT).

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/145/10/1.4962168.html;jsessionid=kLOGrHLoPZw5TqCNSF2j2ccU.x-aip-live-06?itemId=/content/aip/journal/jcp/145/10/10.1063/1.4962168&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/145/10/10.1063/1.4962168&pageURL=http://scitation.aip.org/content/aip/journal/jcp/145/10/10.1063/1.4962168'
Right1,Right2,Right3,