Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/145/10/10.1063/1.4962220
1.
J. M. Calo, J. Chem. Phys. 62, 4904 (1975).
http://dx.doi.org/10.1063/1.430403
2.
C. E. Klots and R. N. Compton, J. Chem. Phys. 69, 16441647 (1978).
http://dx.doi.org/10.1063/1.436739
3.
D. Dreyfuss and H. Y. Wachman, J. Chem. Phys. 76, 20312042 (1982).
http://dx.doi.org/10.1063/1.443177
4.
V. Hermann, B. D. Kay, and A. Castleman, Jr., Chem. Phys. 72, 185200 (1982).
http://dx.doi.org/10.1016/0301-0104(82)87079-1
5.
L. Belau, K. R. Wilson, S. R. Leone, and M. Ahmed, J. Phys. Chem. A 111, 10075 (2007).
http://dx.doi.org/10.1021/jp075263v
6.
J. H. Litman, B. L. Yoder, B. Schläppi, and R. Signorell, Phys. Chem. Chem. Phys. 15, 940949 (2013).
http://dx.doi.org/10.1039/C2CP43098C
7.
U. Buck and M. Winter, Z. Phys. D 31, 291297 (1994).
http://dx.doi.org/10.1007/BF01445010
8.
O. Echt, D. Kreisle, M. Knapp, and E. Recknagel, Chem. Phys. Lett. 108, 401407 (1984).
http://dx.doi.org/10.1016/0009-2614(84)85215-X
9.
C. Bobbert, S. Schütte, C. Steinbach, and U. Buck, Eur. Phys. J. D 19, 183192 (2002).
http://dx.doi.org/10.1007/s10053-002-8868-2
10.
J. Lengyel, A. Pysanenko, V. Poterya, J. Kočišek, and M. Fárník, Chem. Phys. Lett. 612, 256261 (2014).
http://dx.doi.org/10.1016/j.cplett.2014.08.038
11.
J. Bourgalais, V. Roussel, M. Capron, A. Benidar, A. W. Jasper, S. J. Klippenstein, L. Biennier, and S. D. Le Picard, Phys. Rev. Lett. 116, 113401 (2016).
http://dx.doi.org/10.1103/PhysRevLett.116.113401
12.
N. Guggemos, P. Slavíček, and V. V. Kresin, Phys. Rev. Lett. 114, 043401 (2015).
http://dx.doi.org/10.1103/PhysRevLett.114.043401
13.
J. Cuvellier, P. Meynadier, P. De Pujo, O. Sublemontier, J. P. Visticot, J. Berlande, A. Lallement, and J. M. Mestdagh, Z. Phys. D 21, 265269 (1991).
http://dx.doi.org/10.1007/BF01426384
14.
Pick-up is obviously an inelastic process. Momentum transfer has also been used in elastic crossed-beam scattering experiments as a tool for size selection of small neutral clusters. This approach was introduced in Ref. 15 and exploited in numerous publications, including the aforementioned Ref. 7.
15.
U. Buck and H. Meyer, Phys. Rev. Lett. 52, 109112 (1984).
http://dx.doi.org/10.1103/PhysRevLett.52.109
16.
J. Fedor, V. Poterya, A. Pysanenko, and M. Fárník, J. Chem. Phys. 135, 104305 (2011).
http://dx.doi.org/10.1063/1.3633474
17.
J. Lengyel, J. Kočišek, V. Poterya, A. Pysanenko, P. Svrčková, M. Fárník, D. K. Zaouris, and J. Fedor, J. Chem. Phys. 137, 034304 (2012).
http://dx.doi.org/10.1063/1.4733987
18.
J. Lengyel, A. Pysanenko, V. Poterya, P. Slavíček, M. Fárník, J. Kočišek, and J. Fedor, Phys. Rev. Lett. 112, 113401 (2014).
http://dx.doi.org/10.1103/PhysRevLett.112.113401
19.
C. E. Klots, J. Chem. Phys. 83, 58545860 (1985).
http://dx.doi.org/10.1063/1.449615
20.
R. Moro, R. Rabinovitch, and V. V. Kresin, J. Chem. Phys. 124, 146102 (2006).
http://dx.doi.org/10.1063/1.2188938
21.
A. K. Samanta, Y. Wang, J. S. Mancini, J. M. Bowman, and H. Reisler, Chem. Rev. 116, 49134936 (2016).
http://dx.doi.org/10.1021/acs.chemrev.5b00506
22.
K. Hansen, P. U. Andersson, and E. Uggerud, J. Chem. Phys. 131, 124303 (2009).
http://dx.doi.org/10.1063/1.3230111
23.
C. Bréchignac, Ph. Cahuzac, B. Concina, and J. Leygnier, Phys. Rev. Lett. 89, 203401 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.203401
24.
H. Pauly, Atom, Molecule and Cluster Beams I: Basic Theory, Production and Detection of Thermal Energy Beams (Springer, Berlin, 2000), Sec. 2.4.1.
25.
H. Pauly, Atom, Molecule and Cluster Beams I: Basic Theory, Production and Detection of Thermal Energy Beams (Springer, Berlin, 2000), Sec. 3.6.2.
26.
D. Hollas, O. Svoboda, and P. Slavíček, Chem. Phys. Lett. 622, 8085 (2015).
http://dx.doi.org/10.1016/j.cplett.2015.01.019
27.
N. G. Guggemos, Ph.D. dissertation (University of Southern California, Los Angeles,2014).
28.
M. Vollmer, K. Selby, V. Kresin, J. Masui, M. Kruger, and W. Knight, Rev. Sci. Instrum. 59, 19651970 (1988).
http://dx.doi.org/10.1063/1.1140060
29.
The average speed of gas molecules effusing from a long capillary is shifted upwards from this Maxwell-Boltzmann distribution value but not significantly for the present estimate.24
30.
The plotted beam velocities include an estimated correction for the ion flight time within the mass spectrometer, ranging from 2.5% to 5% for the ion masses in the studied range. Adding this correction does not lead to a qualitative change in the entries in Table I and in the conclusions.31
31.
C. Huang, Ph.D. dissertation (University of Southern California, Los Angeles, 2016).
32.
The estimate is guided by the n≈m diagonal in the tables, which may be a plausible assumption.
33.
W. A. de Heer, Ph.D. dissertation (University of California, Berkeley, 1985).
34.
B. L. Yoder, J. H. Litman, P. W. Forysinski, J. L. Corbett, and R. J. Signorell, Phys. Chem. Lett. 2, 26232628 (2011).
http://dx.doi.org/10.1021/jz201086v
35.
B. Schläppi, J. J. Ferreiro, J. H. Litman, and R. Signorell, Int. J. Mass Spectrom. 372, 1321 (2014).
http://dx.doi.org/10.1016/j.ijms.2014.08.021
36.
D. Šmídová, J. Lengyel, A. Pysanenko, J. Med, P. Slavíček, and M. Fárník, J. Phys. Chem. Lett. 6, 28652869 (2015).
http://dx.doi.org/10.1021/acs.jpclett.5b01269
37.
J. Lengyel, A. Pysanenko, P. Rubovič, and M. Fárník, Eur. Phys. J. D 69, 17 (2015).
http://dx.doi.org/10.1140/epjd/e2015-60532-6
38.
P. Lohbrandt, R. Galonska, H. J. Kim, M. S. C. Lauenstein, and U. Buck, in Atomic and Molecular Beams: The State of the Art 2000, edited by R. Campargue (Springer, Berlin, 2001).
39.
V. Profant, V. Poterya, M. Fárník, P. Slavíček, and U. Buck, J. Phys. Chem. A 111, 1247712486 (2007).
http://dx.doi.org/10.1021/jp0751561
40.
V. Poterya, O. Tkáč, J. Fedor, M. Fárník, P. Slavíček, and U. Buck, Int. J. Mass Spectrom. 290, 8593 (2010).
http://dx.doi.org/10.1016/j.ijms.2009.12.007
41.
K. Hansen, Statistical Physics of Nanoparticles in the Gas Phase (Springer, Berlin, 2013).
42.
C. Jackschath, I. Rabin, and W. Schulze, Ber. Bunsengesellschaft Phys. Chem. 96, 12001204 (1992).
http://dx.doi.org/10.1002/bbpc.19920960924
43.
A. Herlert, S. Krückeberg, L. Schweikhard, M. Vogel, and C. Walther, J. Electron Spectrosc. Relat. Phenom. 106, 179186 (2000).
http://dx.doi.org/10.1016/S0368-2048(99)00075-4
http://aip.metastore.ingenta.com/content/aip/journal/jcp/145/10/10.1063/1.4962220
Loading
/content/aip/journal/jcp/145/10/10.1063/1.4962220
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/145/10/10.1063/1.4962220
2016-09-09
2016-09-25

Abstract

Electron ionization is a common tool for the mass spectrometry of atomic and molecular clusters. Any cluster can be ionized efficiently by sufficiently energetic electrons, but concomitant fragmentation can seriously obstruct the goal of size-resolved detection. We present a new general method to assess the original neutral population of the cluster beam. Clusters undergo a sticking collision with a molecule from a crossed beam, and the velocities of neat and doped cluster ion peaks are measured and compared. By making use of longitudinal momentum conservation, one can reconstruct the sizes of the neutral precursors. Here this method is applied to HO and DO clusters in the detected ion size range of 3-10. It is found that water clusters do fragment significantly upon electron impact: the deduced neutral precursor size is ∼3-5 times larger than the observed cluster ions. This conclusion agrees with beam size characterization by another experimental technique: photoionization after Na-doping. Abundant post-ionization fragmentation of water clusters must therefore be an important factor in the interpretation of experimental data; interestingly, there is at present no detailed microscopic understanding of the underlying fragmentation dynamics.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/145/10/1.4962220.html;jsessionid=WssEliNbkOMlwebdtyDvDXY1.x-aip-live-02?itemId=/content/aip/journal/jcp/145/10/10.1063/1.4962220&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/145/10/10.1063/1.4962220&pageURL=http://scitation.aip.org/content/aip/journal/jcp/145/10/10.1063/1.4962220'
Right1,Right2,Right3,