Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/145/10/10.1063/1.4962236
1.
Structural Adhesives: Chemistry and Technology, edited by S. R. Hartshorn (Plenum Press, New York, 1986).
2.
G. I. Panov, Cattech 4, 18 (2000).
http://dx.doi.org/10.1023/A:1011991110517
3.
N. V. Richardson and P. Hofmann, Vacuum 33, 793 (1983).
http://dx.doi.org/10.1016/0042-207X(83)90612-7
4.
X.-C. Guo and R. J. Madix, Surf. Sci. 341, 1065 (1995).
http://dx.doi.org/10.1016/0039-6028(95)00822-5
5.
J. G. Serafin and C. M. Friend, Surf. Sci. 209, 163 (1989).
http://dx.doi.org/10.1016/0039-6028(89)90076-9
6.
A. C. Liu and C. M. Friend, Surf. Sci. 236, 349 (1990).
http://dx.doi.org/10.1016/0039-6028(90)90753-U
7.
X. Xu and C. M. Friend, J. Phys. Chem. 93, 8072 (1989).
http://dx.doi.org/10.1021/j100361a021
8.
L. L. Solomon and R. J. Madix, Surf. Sci. 255, 12 (1991).
http://dx.doi.org/10.1016/0039-6028(91)90008-G
9.
J. Lee, S. Ryu, J. S. Ku, and S. K. Kim, J. Chem. Phys. 115, 10518 (2001).
http://dx.doi.org/10.1063/1.1417537
10.
H. Bu, P. Bertrand, and J. W. Rabalais, J. Chem. Phys. 98, 5855 (1993).
http://dx.doi.org/10.1063/1.464877
11.
J. N. Russell, Jr., S. S. Sarvis, and R. E. Morris, Surf. Sci. 338, 189 (1995).
http://dx.doi.org/10.1016/0039-6028(95)00571-4
12.
A. K. Myers and J. B. Benziger, Langmuir 5, 1270 (1989).
http://dx.doi.org/10.1021/la00090a001
13.
M. Ramsey, G. Rosina, D. Steinmüller, H. H. Graen, and F. P. Netzer, Surf. Sci. 232, 266 (1990).
http://dx.doi.org/10.1016/0039-6028(90)90119-S
14.
K. M. Richard and A. A. Gewirth, J. Phys. Chem. 99, 12288 (1995).
http://dx.doi.org/10.1021/j100032a036
15.
F. Lu, G. N. Salaita, L. Laguren-Davidson, D. A. Stern, E. Wellner, D. G. Frank, N. Batina, D. C. Zapien, N. Walton, and A. T. Hubbard, Langmuir 4, 637 (1988).
http://dx.doi.org/10.1021/la00081a024
16.
H. Ihm and J. M. White, J. Phys. Chem. B 104, 6202 (2000).
http://dx.doi.org/10.1021/jp0005423
17.
M. L. Honkela, J. Björk, and M. Persson, Phys. Chem. Chem. Phys. 14, 5849 (2012).
http://dx.doi.org/10.1039/c2cp24064e
18.
G. Li, J. Han, H. Wang, X. Zhu, and Q. Ge, ACS Catal. 5, 2009 (2015).
http://dx.doi.org/10.1021/cs501805y
19.
L. D. Site, A. Alavi, and C. F. Abrams, Phys. Rev. B 67, 193406 (2003).
http://dx.doi.org/10.1103/PhysRevB.67.193406
20.
L. M. Ghiringhelli, R. Caputo, and L. D. Site, Phys. Rev. B 75, 113403 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.113403
21.
H. Orita and N. Itoh, Appl. Catal., A 258, 17 (2004).
http://dx.doi.org/10.1016/j.apcata.2003.08.001
22.
R. O. Lezna, N. R. de Tacconi, S. A. Centeno, and A. J. Arvia, Langmuir 7, 1241 (1991).
http://dx.doi.org/10.1021/la00054a037
23.
P. Kisliuk, J. Phys. Chem. Solids 3, 95 (1957).
http://dx.doi.org/10.1016/0022-3697(57)90054-9
24.
D. J. Doren and J. C. Tully, Langmuir 4, 256 (1988).
http://dx.doi.org/10.1021/la00080a004
25.
D. E. Brown, D. J. Moffatt, and R. A. Wolkow, Science 279, 542 (1998).
http://dx.doi.org/10.1126/science.279.5350.542
26.
F. Mittendorfer, A. Garhofer, J. Redinger, J. Klimes, J. Harl, and G. Kresse, Phys. Rev. B 84, 201401(R) (2011).
http://dx.doi.org/10.1103/PhysRevB.84.201401
27.
W. Liu, S. N. Filimonov, J. Carrasco, and A. Tkatchenko, Nat. Commun. 4, 2569 (2013).
http://dx.doi.org/10.1038/ncomms3569
28.
R. Peköz, K. Johnston, and D. Donadio, J. Phys. Chem. C 118, 6235 (2014).
http://dx.doi.org/10.1021/jp411422x
29.
K. Johnston, R. Pekoz, and D. Donadio, Surf. Sci. 644, 113 (2016).
http://dx.doi.org/10.1016/j.susc.2015.09.017
30.
M. Dion, H. Rydberg, E. Schröder, D. C. Langreth, and B. I. Lundqvist, Phys. Rev. Lett. 92, 246401 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.246401
31.
A. Gulans, M. J. Puska, and R. M. Nieminen, Phys. Rev.B 79, 201105(R) (2009).
http://dx.doi.org/10.1103/PhysRevB.79.201105
32.
K. Lee, E. D. Murray, L. Kong, B. I. Lundqvist, and D. C. Langreth, Phys. Rev. B 82, 081101(R) (2010).
http://dx.doi.org/10.1103/PhysRevB.82.081101
33.
J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
34.
J. Perdew, K. Burke, A. Zupan, and M. Ernzerhof, J. Chem. Phys. 108, 1522 (1998).
http://dx.doi.org/10.1063/1.475524
35.
M. Elstner, P. Hobza, T. Frauenheim, S. Suhai, and E. Kaxiras, J. Chem. Phys. 114, 5149 (2001).
http://dx.doi.org/10.1063/1.1329889
36.
J. Harl and G. Kresse, Phys. Rev. B 77, 045136 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.045136
37.
A. Tkatchenko and M. Scheffler, Phys. Rev. Lett. 102, 073005 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.073005
38.
A. T. R. A. DiStasio, Jr., R. Car, and M. Scheffler, Phys. Rev. Lett. 108, 236402 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.236402
39.
J. P. Perdew and Y. Yang, Phys. Rev. B 33, 8800(R) (1986).
http://dx.doi.org/10.1103/PhysRevB.33.8800
40.
P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.17953
41.
G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.1758
42.
G. Kresse and J. Hafner, Phys. Rev. B 48, 13115 (1993).
http://dx.doi.org/10.1103/PhysRevB.48.13115
43.
G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).
http://dx.doi.org/10.1016/0927-0256(96)00008-0
44.
J. Klimes, D. R. Bowler, and A. Michaelides, Phys. Rev. B 83, 195131 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.195131
45.
J. Carrasco, W. Liu, A. Michaelides, and A. Tkatchenko, J. Chem. Phys. 140, 084704 (2014).
http://dx.doi.org/10.1063/1.4866175
46.
E. D. Murray, K. Lee, and D. C. Langreth, J. Chem. Theory Comput. 5, 2754 (2009).
http://dx.doi.org/10.1021/ct900365q
47.
H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).
http://dx.doi.org/10.1103/PhysRevB.13.5188
48.
M. Methfessel and A. T. Paxton, Phys. Rev. B 40, 3616 (1989).
http://dx.doi.org/10.1103/PhysRevB.40.3616
49.
In order to find the most stable adsorption site of any molecule on any surface, we first considered the eight high symmetry adsorption sites. The most energetic configuration is assigned as the most stable one for each molecule on a specific surface. For the AEP calculations, instead of dealing with these eight structures, we considered the most stable one among the eight. We started initially with the most stable configuration and fixed only the z-coordinate (relaxing x and y coordinates).
50.
In the AEP curves, the effect of constraining the atomic positions has a small effect on the adsorption energy of molecules on the surfaces. For instance, for PL/Au(111) the minimum of AEP calculated with PBE-vdW is −0.80 eV and the fully optimized value is −0.89 eV. For PL/Pt(111) calculated with PBE-vdW, the chemisorption and physisorption AEP energies are −1.79 and −1.13 eV, and the fully optimized energies are −1.82 and −1.23 eV, respectively. For PX on Au and Pt(111), the minimum of AEP calculated with PBE-vdW is −1.51 and −2.73 eV, and the adsorption energies of fully relaxed systems are −1.51 and −2.87 eV, respectively.
51.
G. Henkelman and H. Jonsson, J. Chem. Phys. 113, 9978 (2000).
http://dx.doi.org/10.1063/1.1323224
52.
G. Henkelman and H. Jonsson, J. Chem. Phys. 113, 9901 (2000).
http://dx.doi.org/10.1063/1.1329672
53.
D. Mei, E. W. Hansen, and M. Neurock, J. Phys. Chem. B 107, 798 (2003).
http://dx.doi.org/10.1021/jp0139890
54.
A. A. Phatak, W. N. Delgass, F. H. Ribeiro, and W. F. Schneider, J. Phys. Chem. C 113, 7269 (2009).
http://dx.doi.org/10.1021/jp810216b
55.
D. Donadio, L. M. Ghiringhelli, and L. Delle Site, J. Am. Chem. Soc. 134, 19217 (2012).
http://dx.doi.org/10.1021/ja308899g
56.
G. Li, I. Tamblyn, V. R. Cooper, H.-J. Gao, and J. B. Neaton, Phys. Rev. B 85, 121409 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.121409
57.
K. Berland, C. A. Arter, V. R. Cooper, K. Lee, B. I. Lundqvist, E. Schroder, T. Thonhauser, and P. Hyldgaard, J. Chem. Phys. 140, 18A539 (2014).
http://dx.doi.org/10.1063/1.4871731
58.
A. Wander, G. Held, R. Q. Hwang, G. S. Blackman, M. L. Xu, P. de Andres, M. A. Van Hove, and G. A. Somorjai, Surf. Sci. 249, 21 (1991).
http://dx.doi.org/10.1016/0039-6028(91)90830-L
59.
H. Yildirim, T. Greber, and A. Kara, J. Phys. Chem. C 117, 20572 (2013).
http://dx.doi.org/10.1021/jp404487z
60.
S. J. Jenkins, Proc. R. Soc. A 465, 2949 (2009).
http://dx.doi.org/10.1098/rspa.2009.0119
61.
As the adsorption energy of benzene and phenol on Au(111) was not particularly dependent on the adsorption site for PBE and PBE-vdW, we decided not to test systematically the molecules for revPBE-vdW and PW86-vdW2.
62.
Even though the energy difference between B-30 and hcp-30 sites calculated by PBE-vdW is very small (0.02 eV), the molecule is distorted from its gas-phase geometry at B-30 site and keeps its planar geometry at hcp-30 site. In contrast, PL on hcp-30 site calculated by PBE is not stable and goes to B-30 site with a chemisorbed geometry. We have also explored the physisorption energies and structural features with the other functionals including vdW interactions. For B-30 site, both PW86-vdW2 and revPBE-vdW functionals yield to chemisorbed structures, while PL on hcp-30 site is stable and keeps its gas phase geometry.
63.
P. Ferrin, S. Kandoi, A. U. Nilekar, and M. Mavrikakis, Surf. Sci. 606, 679 (2012).
http://dx.doi.org/10.1016/j.susc.2011.12.017
64.
NEB calculations for Au surface with eight reaction intermediates changed the activation energy by 0.03 eV. Thus, due to the computational cost, we used four reaction intermediates for Pt surface.
http://aip.metastore.ingenta.com/content/aip/journal/jcp/145/10/10.1063/1.4962236
Loading
/content/aip/journal/jcp/145/10/10.1063/1.4962236
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/145/10/10.1063/1.4962236
2016-09-08
2016-09-26

Abstract

The adsorption of phenol and phenoxy on the (111) surface of Au and Pt has been investigated by density functional theory calculations with the conventional PBE functional and three different non-local van der Waals (vdW) exchange and correlation functionals. It is found that both phenol and phenoxy on Au(111) are physisorbed. In contrast, phenol on Pt(111) presents an adsorption energy profile with a stable chemisorption state and a weakly metastable physisorbed precursor. While the use of vdW functionals is essential to determine the correct binding energy of both chemisorption and physisorption states, the relative stability and existence of an energy barrier between them depend on the semi-local approximations in the functionals. The first dissociation mechanism of phenol, yielding phenoxy and atomic hydrogen, has been also investigated, and the reaction and activation energies of the resulting phenoxy on the flat surfaces of Au and Pt were discussed.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/145/10/1.4962236.html;jsessionid=dCwpOqQJaY7Al42WYaYA-egd.x-aip-live-06?itemId=/content/aip/journal/jcp/145/10/10.1063/1.4962236&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/145/10/10.1063/1.4962236&pageURL=http://scitation.aip.org/content/aip/journal/jcp/145/10/10.1063/1.4962236'
Right1,Right2,Right3,