Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/145/10/10.1063/1.4962237
1.
A. Nilsson et al., “X-ray absorption spectroscopy and X-ray Raman scattering of water and ice; an experimental view,” J. Electron Spectrosc. Relat. Phenom. 177(2-3), 99129 (2010).
http://dx.doi.org/10.1016/j.elspec.2010.02.005
2.
A. K. Soper and C. J. Benmore, “Quantum differences between heavy and light water,” Phys. Rev. Lett. 101(6), 065502 (2008).
http://dx.doi.org/10.1103/physrevlett.101.065502
3.
Y. Nagata et al., “Nuclear quantum effects affect bond orientation of water at the water-vapor interface,” Phys. Rev. Lett. 109(22), 226101 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.226101
4.
C. Gainarua et al., “Anomalously large isotope effect in the glass transition of water,” Proc. Natl. Acad. Sci. U. S. A. 111(49), 1740217407 (2014).
http://dx.doi.org/10.1073/pnas.1411620111
5.
E. H. Hardy et al., “Isotope effect on the translational and rotational motion in liquid water and ammonia,” J. Chem. Phys. 114(7), 3174 (2001).
http://dx.doi.org/10.1063/1.1340584
6.
U. Bergmann et al., “Isotope effects in liquid water probed by x-ray Raman spectroscopy,” Phys. Rev. B 76(2), 024202 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.024202
7.
A. Giuliani et al., “Quantum effects and the local environment of water hydrogen: Deep inelastic neutron scattering study,” Phys. Rev. B 86(10), 104308 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.104308
8.
E. T. J. Nibbering and T. Elsaesser, “Ultrafast vibrational dynamics of hydrogen bonds in the condensed phase,” Chem. Rev. 104, 18871914 (2004).
http://dx.doi.org/10.1021/cr020694p
9.
M. Ceriotti et al., “Nuclear quantum effects in water and aqueous systems: Experiment, theory, and current challenges,” Chem. Rev. 116, 7529 (2016).
http://dx.doi.org/10.1021/acs.chemrev.5b00674
10.
F. Giberti et al., “The role of quantum effects on structural and electronic fluctuations in neat and charged water,” J. Phys. Chem. B 118(46), 1322613235 (2014).
http://dx.doi.org/10.1021/jp507752e
11.
X. Z. Li, B. Walker, and A. Michaelides, “Quantum nature of the hydrogen bond,” Proc. Natl. Acad. Sci. U. S. A. 108(16), 63696373 (2011).
http://dx.doi.org/10.1073/pnas.1016653108
12.
A. Nilsson and L. G. M. Pettersson, “The structural origin of anomalous properties of liquid water,” Nat. Commun. 6, 8998 (2015).
http://dx.doi.org/10.1038/ncomms9998
13.
A. Nilsson and L. G. M. Pettersson, “Perspective on the structure of liquid water,” Chem. Phys. 389(1-3), 134 (2011).
http://dx.doi.org/10.1016/j.chemphys.2011.07.021
14.
J. Franck and R. W. Wood, “Ultraviolet absorption of heavy water vapor,” Phys. Rev. 45(10), 667668 (1934).
http://dx.doi.org/10.1103/PhysRev.45.667
15.
M. F. Fox and E. Hayon, “Far-ultraviolet solvent spectroscopy,” J. Phys. Chem. 76(19), 27032750 (1972).
http://dx.doi.org/10.1021/j100663a012
16.
R. E. Verrall, “Vacuum-ultraviolet study of liquid H2O and D2O,” J. Chem. Phys. 50(6), 2746 (1969).
http://dx.doi.org/10.1063/1.1671439
17.
R. N. Compton et al., “Threshold electron impact excitation of atoms and molecules: Detection of triplet and temporary negative ion states,” J. Chem. Phys. 48(2), 901909 (1968).
http://dx.doi.org/10.1063/1.1668733
18.
J. M. Heller, R. D. Birkhoff, and L. R. Painter, “Isotopic effects on the electronic properties of H2O and D2O in the vacuum uv,” J. Chem. Phys. 67(5), 1858 (1977).
http://dx.doi.org/10.1063/1.435142
19.
T. W. Marin, K. Takahashi, and D. M. Bartels, “Temperature and density dependence of the light and heavy water ultraviolet absorption edge,” J. Chem. Phys. 125(10), 104314 (2006).
http://dx.doi.org/10.1063/1.2338521
20.
M. Del Ben, J. Hutter, and J. VandeVondele, “Probing the structural and dynamical properties of liquid water with models including non-local electron correlation,” J. Chem. Phys. 143, 054506 (2015).
http://dx.doi.org/10.1063/1.4927325
21.
D. M. Bartels and R. A. Crowell, “Photoionization yield vs energy in H2O and D2O,” J. Phys. Chem. A 104, 33493355 (2000).
http://dx.doi.org/10.1021/jp9941460
22.
C. G. Elles et al., “Excitation-energy dependence of the mechanism for two-photon ionization of liquid H2O and D2O from 8.3 to 12.4 eV,” J. Chem. Phys. 125(4), 44515 (2006).
http://dx.doi.org/10.1063/1.2217738
23.
R. Lian, R. A. Crowell, and I. A. Shkrob, “Solvation and thermalization of electrons generated by above-the-gap (12.4 eV) two-photon ionization of liquid H2O and D2O,” J. Phys. Chem. A 109, 15101520 (2005).
http://dx.doi.org/10.1021/jp045657b
24.
M. U. Sander et al., “Liquid water ionization: Mechanistic implications of the H/D isotope effect in the geminate recombination of hydrated,” Chem. Phys. 258, 257265 (2000).
http://dx.doi.org/10.1016/S0301-0104(00)00170-1
25.
T. Fransson et al., “X-ray and electron spectroscopy of water,” Chem. Rev. 116, 7551 (2016).
http://dx.doi.org/10.1021/acs.chemrev.5b00672
26.
O. Fuchs et al., “Isotope and temperature effects in liquid water probed by x-ray absorption and resonant x-ray emission spectroscopy,” Phys. Rev. Lett. 100(2), 027801 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.027801
27.
Y. Harada et al., “Selective probing of the OH or OD stretch vibration in liquid water using resonant inelastic soft-x-ray scattering,” Phys. Rev. Lett. 111(19), 193001 (2013).
http://dx.doi.org/10.1103/PhysRevLett.111.193001
28.
C. Huang et al., “Increasing correlation length in bulk supercooled H2O, D2O, and NaCl solution determined from small angle x-ray scattering,” J. Chem. Phys. 133(13), 134504 (2010).
http://dx.doi.org/10.1063/1.3495974
29.
K. M. Lange et al., “X-ray emission from pure and dilute H2O and D2O in a liquid microjet: Hydrogen bonds and nuclear dynamics,” Phys. Rev. B 85(15), 155104 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.155104
30.
A. Nilsson et al., “Resonant inelastic X-ray scattering of liquid water,” J. Electron Spectrosc. Relat. Phenom. 188, 84100 (2013).
http://dx.doi.org/10.1016/j.elspec.2012.09.011
31.
K. Nishizawa et al., “High-resolution soft X-ray photoelectron spectroscopy of liquid water,” Phys. Chem. Chem. Phys. 13(2), 413417 (2011).
http://dx.doi.org/10.1039/C0CP01636E
32.
K. Nygard et al., “Isotope quantum effects in the electron momentum density of water,” J. Chem. Phys. 126(15), 154508 (2007).
http://dx.doi.org/10.1063/1.2723093
33.
S. Thurmer et al., “On the nature and origin of dicationic, charge-separated species formed in liquid water on X-ray irradiation,” Nat. Chem. 5(7), 590596 (2013).
http://dx.doi.org/10.1038/nchem.1680
34.
T. Tokushima et al., “High resolution X-ray emission spectroscopy of liquid water: The observation of two structural motifs,” Chem. Phys. Lett. 460(4-6), 387400 (2008).
http://dx.doi.org/10.1016/j.cplett.2008.04.077
35.
T. Tokushima et al., “Polarization dependent resonant x-ray emission spectroscopy of D2O and H2O water: Assignment of the local molecular orbital symmetry,” J. Chem. Phys. 136(4), 044517 (2012).
http://dx.doi.org/10.1063/1.3678443
36.
J. S. Tse et al., “X-ray Raman spectroscopic study of water in the condensed phases,” Phys. Rev. Lett. 100(9), 095502 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.095502
37.
L. Weinhardt et al., “Nuclear dynamics and spectator effects in resonant inelastic soft x-ray scattering of gas-phase water molecules,” J. Chem. Phys. 136(14), 144311 (2012).
http://dx.doi.org/10.1063/1.3702644
38.
T. Fransson et al., “Requirements of first-principles calculations of X-ray absorption spectra of liquid water,” Phys. Chem. Chem. Phys. 18(1), 566583 (2016).
http://dx.doi.org/10.1039/C5CP03919C
39.
B. Hetenyi et al., “Calculation of near-edge x-ray-absorption fine structure at finite temperatures: Spectral signatures of hydrogen bond breaking in liquid water,” J. Chem. Phys. 120(18), 86328637 (2004).
http://dx.doi.org/10.1063/1.1703526
40.
M. Iannuzzi, “X-ray absorption spectra of hexagonal ice and liquid water by all-electron Gaussian and augmented plane wave calculations,” J. Chem. Phys. 128(20), 204506 (2008).
http://dx.doi.org/10.1063/1.2928842
41.
L. Kong, X. Wu, and R. Car, “Roles of quantum nuclei and inhomogeneous screening in the x-ray absorption spectra of water and ice,” Phys. Rev. B 86(13), 134203 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.134203
42.
T. D. Kuhne and R. Z. Khaliullin, “Electronic signature of the instantaneous asymmetry in the first coordination shell of liquid water,” Nat. Commun. 4, 1450 (2013).
http://dx.doi.org/10.1038/ncomms2459
43.
M. Leetmaa et al., “Theoretical approximations to X-ray absorption spectroscopy of liquid water and ice,” J. Electron Spectrosc. Relat. Phenom. 177(2-3), 135157 (2010).
http://dx.doi.org/10.1016/j.elspec.2010.02.004
44.
M. P. Ljungberg, L. G. M. Pettersson, and A. Nilsson, “Vibrational interference effects in x-ray emission of a model water dimer: Implications for the interpretation of the liquid spectrum,” J. Chem. Phys. 134(4), 044513 (2011).
http://dx.doi.org/10.1063/1.3533956
45.
D. Prendergast and G. Galli, “X-ray absorption spectra of water from first principles calculations,” Phys. Rev. Lett. 96(21), 215502 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.215502
46.
G. Gavrila et al., “Time-resolved X-ray absorption spectroscopy of infrared-laser-induced temperature jumps in liquid water,” Appl. Phys. A 96(1), 1118 (2009).
http://dx.doi.org/10.1007/s00339-009-5190-6
47.
N. Huse et al., “Probing the hydrogen-bond network of water via time-resolved soft X-ray spectroscopy,” Phys. Chem. Chem. Phys. 11(20), 39513957 (2009).
http://dx.doi.org/10.1039/b822210j
48.
J. Meibohm, S. Schreck, and P. Wernet, “Temperature dependent soft x-ray absorption spectroscopy of liquids,” Rev. Sci. Instrum. 85(10), 103102 (2014).
http://dx.doi.org/10.1063/1.4896977
49.
M. Nagasaka et al., “Development of a liquid flow cell to measure soft X-ray absorption in transmission mode: A test for liquid water,” J. Electron Spectrosc. Relat. Phenom. 177(2-3), 130134 (2010).
http://dx.doi.org/10.1016/j.elspec.2009.11.001
50.
M. Nagasaka, H. Yuzawa, and N. Kosugi, “Development and application of in situ/operando soft X-ray transmission cells to aqueous solutions and catalytic and electrochemical reactions,” J. Electron Spectrosc. Relat. Phenom. 200, 293310 (2015).
http://dx.doi.org/10.1016/j.elspec.2015.05.012
51.
L. Å. Näslund et al., “X-ray absorption spectroscopy measurements of liquid water,” J. Phys. Chem. B 109, 1383513839 (2005).
http://dx.doi.org/10.1021/jp052046q
52.
S. Schreck et al., “A sample holder for soft x-ray absorption spectroscopy of liquids in transmission mode,” Rev. Sci. Instrum. 82(10), 103101 (2011).
http://dx.doi.org/10.1063/1.3644192
53.
P. Wernet et al., “Ultrafast temperature jump in liquid water studied by a novel infrared pump-x-ray probe technique,” Appl. Phys. A 92(3), 511516 (2008).
http://dx.doi.org/10.1007/s00339-008-4726-5
54.
P. Wernet et al., “The structure of the first coordination shell in liquid water,” Science 304, 995999 (2004).
http://dx.doi.org/10.1126/science.1096205
55.
S. Myneni et al., “Spectroscopic probing of local hydrogen-bonding structures in liquid water,” J. Phys.: Condens. Matter 14, L213L219 (2002).
http://dx.doi.org/10.1088/0953-8984/14/8/106
56.
D. Coulman et al., “Excitation, deexcitation, and fragmentation in the core region of condensed and adsorbed water,” J. Chem. Phys. 93(1), 58 (1990).
http://dx.doi.org/10.1063/1.459560
57.
P. Parent et al., “Structure of the water ice surface studied by x-ray absorption spectroscopy at the O K-edge,” J. Chem. Phys. 117(23), 10842 (2002).
http://dx.doi.org/10.1063/1.1519256
58.
R. Romberg et al., “Photon stimulated desorption of neutral hydrogen atoms from condensed water and ammonia by resonant O1s and N1s excitation: Search for the signature of ultrafast bond breaking,” Surf. Sci. 451, 116123 (2000).
http://dx.doi.org/10.1016/S0039-6028(00)00016-9
59.
K. R. Wilson et al., “X-ray spectroscopy of liquid water microjets,” J. Phys. Chem. B 105, 33463349 (2001).
http://dx.doi.org/10.1021/jp010132u
60.
S. Fatehi et al., “Nuclear quantum effects in the structure and lineshapes of the N2 near-edge x-ray absorption fine structure spectrum,” J. Chem. Phys. 132(9), 094302 (2010).
http://dx.doi.org/10.1063/1.3324889
61.
V. C. Felicíssimo et al., “A theoretical study of the role of the hydrogen bond on core ionization of the water dimer,” Chem. Phys. 312(1-3), 311318 (2005).
http://dx.doi.org/10.1016/j.chemphys.2004.12.006
http://aip.metastore.ingenta.com/content/aip/journal/jcp/145/10/10.1063/1.4962237
Loading
/content/aip/journal/jcp/145/10/10.1063/1.4962237
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/145/10/10.1063/1.4962237
2016-09-08
2016-09-30

Abstract

The effects of isotope substitution in liquid water are probed by x-ray absorption spectroscopy at the O K-edge as measured in transmission mode. Confirming earlier x-ray Raman scattering experiments, the DO spectrum is found to be blue shifted with respect to HO, and the DO spectrum to be less broadened. Following the earlier interpretations of UV and x-ray Raman spectra, the shift is related to the difference in ground-state zero-point energies between DO and HO, while the difference in broadening is related to the difference in ground-state vibrational zero-point distributions. We demonstrate that the transmission-mode measurements allow for determining the spectral shapes with unprecedented accuracy. Owing in addition to the increased spectral resolution and signal to noise ratio compared to the earlier measurements, the new data enable the stringent determination of blue shift and broadening in the O K-edge x-ray absorption spectrum of liquid water upon isotope substitution. The results are compared to UV absorption data, and it is discussed to which extent they reflect the differences in zero-point energies and vibrational zero-point distributions in the ground-states of the liquids. The influence of the shape of the final-state potential, inclusion of the Franck-Condon structure, and differences between liquid HO and DO resulting from different hydrogen-bond environments in the liquids are addressed. The differences between the O K-edge absorption spectra of water from our transmission-mode measurements and from the state-of-the-art x-ray Raman scattering experiments are discussed in addition. The experimentally extracted values of blue shift and broadening are proposed to serve as a test for calculations of ground-state zero-point energies and vibrational zero-point distributions in liquid HO and DO. This clearly motivates the need for new calculations of the O K-edge x-ray absorption spectrum of liquid water.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/145/10/1.4962237.html;jsessionid=Aas5prvEzPOqG2o49xfoED9o.x-aip-live-06?itemId=/content/aip/journal/jcp/145/10/10.1063/1.4962237&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/145/10/10.1063/1.4962237&pageURL=http://scitation.aip.org/content/aip/journal/jcp/145/10/10.1063/1.4962237'
Right1,Right2,Right3,