Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/145/10/10.1063/1.4962255
1.
T. L. Chantawansri, T. W. Sirk, E. F. Byrd, J. W. Andzelm, and B. M. Rice, J. Chem. Phys. 137, 204901 (2012).
http://dx.doi.org/10.1063/1.4767394
2.
B. Arman, A. Srinivas Reddy, and G. Arya, Macromolecules 45, 3247 (2012).
http://dx.doi.org/10.1021/ma3001934
3.
K. Kremer and G. S. Grest, J. Chem. Phys. 92, 5057 (1990).
http://dx.doi.org/10.1063/1.458541
4.
D. Reith, H. Meyer, and F. Müller-Plathe, Macromolecules 34, 2335 (2001).
http://dx.doi.org/10.1021/ma001499k
5.
G. Milano and F. Müller-Plathe, J. Phys. Chem. B 109, 18609 (2005).
http://dx.doi.org/10.1021/jp0523571
6.
B. Bayramoglu and R. Faller, Macromolecules 45, 9205 (2012).
http://dx.doi.org/10.1021/ma301280b
7.
G. Maurel, B. Schnell, F. Goujon, M. Couty, and P. Malfreyt, J. Chem. Theory Comput. 8, 4570 (2012).
http://dx.doi.org/10.1021/ct300582y
8.
K. Kamio, K. Moorthi, and D. N. Theodorou, Macromolecules 40, 710 (2007).
http://dx.doi.org/10.1021/ma060803s
9.
V. Agrawal, G. Arya, and J. Oswald, Macromolecules 47, 3378 (2014).
http://dx.doi.org/10.1021/ma500320n
10.
S. Izvekov and G. Voth, J. Phys. Chem. B 109, 2469 (2005).
http://dx.doi.org/10.1021/jp044629q
11.
S. Izvekov, A. Violi, and G. A. Voth, J. Phys. Chem. B 109, 17019 (2005).
http://dx.doi.org/10.1021/jp0530496
12.
M. Grujicic, J. Snipes, S. Ramaswami, R. Yavari, J. Runt, J. Tarter, and G. Dillon, J. Mater. Eng. Perform. 22, 1964 (2013).
http://dx.doi.org/10.1007/s11665-013-0485-3
13.
W. Mock, Jr., S. Bartyczak, G. Lee, J. Fedderly, and K. Jordan, Shock Compression of Condensed Matter 2009: Proceedings of the American Physical Society Topical Group on Shock Compression of Condensed Matter (AIP Publishing, 2009), Vol. 1195, pp. 12411244.
14.
K. P. Santo and M. L. Berkowitz, J. Chem. Phys. 140, 054906 (2014).
http://dx.doi.org/10.1063/1.4862987
15.
K. P. Santo and M. L. Berkowitz, J. Phys. Chem. B 119, 8879 (2014).
http://dx.doi.org/10.1021/jp505720d
16.
S. J. Marrink, H. J. Risselada, S. Yefimov, D. P. Tieleman, and A. H. De Vries, J. Phys. Chem. B 111, 7812 (2007).
http://dx.doi.org/10.1021/jp071097f
17.
Y. Fu, J. Michopoulos, and J.-H. Song, J. Polym. Sci., Part B: Polym. Phys. 53, 1292 (2015).
http://dx.doi.org/10.1002/polb.23758
18.
D. Brown and J. H. Clarke, Macromolecules 24, 2075 (1991).
http://dx.doi.org/10.1021/ma00008a056
19.
F. M. Capaldi, M. C. Boyce, and G. C. Rutledge, Polymer 45, 1391 (2004).
http://dx.doi.org/10.1016/j.polymer.2003.07.011
20.
H. A. Karimi-Varzaneh, N. F. van der Vegt, F. Müller-Plathe, and P. Carbone, ChemPhysChem 13, 3428 (2012).
http://dx.doi.org/10.1002/cphc.201200111
21.
P. Carbone, H. Varzaneh, X. Chen, and F. Müller-Plathe, J. Chem. Phys. 128, 064904 (2008).
http://dx.doi.org/10.1063/1.2829409
22.
R. Henderson, Phys. Lett. A 49, 197 (1974).
http://dx.doi.org/10.1016/0375-9601(74)90847-0
23.
M. E. Johnson, T. Head-Gordon, and A. A. Louis, J. Chem. Phys. 126, 144509 (2007).
http://dx.doi.org/10.1063/1.2715953
24.
R. DeVane, M. L. Klein, C.-C. Chiu, S. O. Nielsen, W. Shinoda, and P. B. Moore, J. Phys. Chem. B 114, 6386 (2010).
http://dx.doi.org/10.1021/jp9117369
25.
T. W. Rosch, J. K. Brennan, S. Izvekov, and J. W. Andzelm, Phys. Rev. E 87, 042606 (2013).
http://dx.doi.org/10.1103/PhysRevE.87.042606
26.
D. D. Hsu, W. Xia, S. G. Arturo, and S. Keten, J. Chem. Theory Comput. 10, 2514 (2014).
http://dx.doi.org/10.1021/ct500080h
27.
D. D. Hsu, W. Xia, S. G. Arturo, and S. Keten, Macromolecules 48, 3057 (2015).
http://dx.doi.org/10.1021/acs.macromol.5b00259
28.
T. C. Moore, C. R. Iacovella, and C. McCabe, J. Chem. Phys. 140, 224104 (2014).
http://dx.doi.org/10.1063/1.4880555
29.
S. Izvekov, P. W. Chung, and B. M. Rice, J. Chem. Phys. 135, 044112 (2011).
http://dx.doi.org/10.1063/1.3607603
30.
G. Faure, J.-B. Maillet, and G. Stoltz, J. Chem. Phys. 140, 114105 (2014).
http://dx.doi.org/10.1063/1.4868547
31.
J. K. Brennan, M. Lísal, J. D. Moore, S. Izvekov, I. V. Schweigert, and J. P. Larentzos, J. Phys. Chem. Lett. 5, 2144 (2014).
http://dx.doi.org/10.1021/jz500756s
32.
J. D. Moore, B. C. Barnes, S. Izvekov, M. Lísal, M. S. Sellers, D. E. Taylor, and J. K. Brennan, J. Chem. Phys. 144, 104501 (2016).
http://dx.doi.org/10.1063/1.4942520
33.
M. S. Daw and M. I. Baskes, Phys. Rev. B 29, 6443 (1984).
http://dx.doi.org/10.1103/PhysRevB.29.6443
34.
S. Plimpton, J. Comput. Phys. 117, 1 (1995).
http://dx.doi.org/10.1006/jcph.1995.1039
35.
J. R. Maple, M.-J. Hwang, T. P. Stockfisch, U. Dinur, M. Waldman, C. S. Ewig, and A. T. Hagler, J. Comput. Chem. 15, 162 (1994).
http://dx.doi.org/10.1002/jcc.540150207
36.
S. J. Plimpton, R. Pollock, and M. Stevens, “Particle-mesh Ewald and rRESPA for parallel molecular dynamics simulations,” in Proceedings of the Eighth SIAM Conference on Parallel Processing for Scientific Computing, Minneapolis, MN (SIAM, 1997), http://dblp2.uni-trier.de/db/conf/ppsc/.
37.
38.
V. Agrawal, K. Holzworth, W. Nantasetphong, A. V. Amirkhizi, J. Oswald, and S. Nemat-Nasser, J. Polym. Sci., Part B: Polym. Phys. 54, 797 (2016).
http://dx.doi.org/10.1002/polb.23976
39.
P. Yi and G. C. Rutledge, J. Chem. Phys. 135, 024903 (2011).
http://dx.doi.org/10.1063/1.3608056
40.
D. Reith, M. Pütz, and F. Müller-Plathe, J. Comput. Chem. 24, 1624 (2003).
http://dx.doi.org/10.1002/jcc.10307
41.
R. Faller, Polymer 45, 3869 (2004).
http://dx.doi.org/10.1016/j.polymer.2003.11.053
42.
A. Clark, J. McCarty, I. Lyubimov, and M. Guenza, Phys. Rev. Lett. 109, 168301 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.168301
43.
H. Qian, P. Carbone, X. Chen, H. Karimi-Varzaneh, C. Liew, and F. Müller-Plathe, Macromolecules 41, 9919 (2008).
http://dx.doi.org/10.1021/ma801910r
44.
C. A. Croxton, Liquid State Physics. A Statistical Introduction (Cambridge Monographs on Physics, 2009), Vol. 1, ISBN: 9780521114349.
45.
D. McQuarrie, Statistical Mechanics (Happer and Row, New York, 1976).
46.
J. B. Hooper, D. Bedrov, G. D. Smith, B. Hanson, O. Borodin, D. M. Dattelbaum, and E. M. Kober, J. Chem. Phys. 130, 144904 (2009).
http://dx.doi.org/10.1063/1.3077868
47.
A. T. J. Hayward, Br. J. Appl. Phys. 18, 965 (1967).
http://dx.doi.org/10.1088/0508-3443/18/7/312
48.
A. L. Kovarskii, High-pressure Chemistry and Physics of Polymers (CRC Press, 1994).
49.
V. Nanda and R. Simha, J. Chem. Phys. 41, 1884 (1964).
http://dx.doi.org/10.1063/1.1726176
50.
R. R. Matheson, J. Phys. Chem. 91, 6062 (1987).
http://dx.doi.org/10.1021/j100307a049
51.
P. Heydemann and J. Houck, J. Polym. Sci., Part B: Polym. Phys. 10, 1631 (1972).
http://dx.doi.org/10.1002/pol.1972.160100901
52.
S. P. Marsh, LASL Shock Hugoniot Data (University of California Press, 1980), Vol. 5.
53.
E. J. Reed, L. E. Fried, and J. Joannopoulos, Phys. Rev. Lett. 90, 235503 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.235503
54.
E. J. Reed, L. E. Fried, J. Joannopoulos, and M. Manaa, A Multi-Scale Approach to Molecular Dynamics Simulations of Shock Waves (United States Department of Energy, 2004).
55.
D. M. Dattelbaum, J. D. Jensen, A. M. Schwendt, E. M. Kober, M. W. Lewis, and R. Menikoff, J. Chem. Phys. 122 (2005).
http://dx.doi.org/10.1063/1.1879872
56.
M. A. Meyers, Dynamic Behavior of Materials (John Wiley & Sons, 1994).
57.
R. Barker, Jr., J. Appl. Phys. 38, 4234 (1967).
http://dx.doi.org/10.1063/1.1709110
58.
R. W. Warfield, Makromol. Chem. 175, 3285 (1974).
http://dx.doi.org/10.1002/macp.1974.021751119
59.
C. Wu, G. Jura, and M. Shen, J. Appl. Phys. 43, 4348 (1972).
http://dx.doi.org/10.1063/1.1660926
60.
J. G. Curro, J. Chem. Phys. 58, 374 (1973).
http://dx.doi.org/10.1063/1.1678933
61.
Y. Wada, A. Itani, T. Nishi, and S. Nagai, J. Polym. Sci., Part B: Polym. Phys. 7, 201 (1969).
http://dx.doi.org/10.1002/pol.1969.160070116
62.
J. M. Walsh and R. H. Christian, Phys. Rev. 97, 1544 (1955).
http://dx.doi.org/10.1103/PhysRev.97.1544
63.
D. J. Lacks and G. C. Rutledge, J. Phys. Chem. 98, 1222 (1994).
http://dx.doi.org/10.1021/j100055a030
64.
K.-H. Lin, B. L. Holian, T. C. Germann, and A. Strachan, J. Chem. Phys. 141, 064107 (2014).
http://dx.doi.org/10.1063/1.4891308
http://aip.metastore.ingenta.com/content/aip/journal/jcp/145/10/10.1063/1.4962255
Loading
/content/aip/journal/jcp/145/10/10.1063/1.4962255
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/145/10/10.1063/1.4962255
2016-09-13
2016-09-29

Abstract

We investigate the thermomechanical response of semi-crystalline polyethylene under shock compression by performing molecular dynamics (MD) simulations using a new coarse-graining scheme inspired by the embedded atom method. The coarse-graining scheme combines the iterative Boltzmann inversion method and least squares optimization to parameterize interactions between coarse-grained sites, including a many-body potential energy designed to improve the representability of the model across a wide range of thermodynamic states. We demonstrate that a coarse-grained model of polyethylene, calibrated to match target structural and thermodynamic data generated from isothermal MD simulations at different pressures, can also accurately predict the shock Hugoniot response. Analysis of the rise in temperature along the shock Hugoniot and comparison with analytical predictions from the Mie–Grüneisen equation of state are performed to thoroughly explore the thermodynamic consistency of the model. As the coarse-graining model affords nearly two orders of magnitude reduction in simulation time compared to all-atom MD simulations, the proposed model can help identify how nanoscale structure in semi-crystalline polymers, such as polyethylene, influences mechanical behavior under extreme loading.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/145/10/1.4962255.html;jsessionid=cp_dNNPE8Gi9teSqmHPe7Ndr.x-aip-live-06?itemId=/content/aip/journal/jcp/145/10/10.1063/1.4962255&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/145/10/10.1063/1.4962255&pageURL=http://scitation.aip.org/content/aip/journal/jcp/145/10/10.1063/1.4962255'
Right1,Right2,Right3,