Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/145/10/10.1063/1.4962258
1.
P. Tucker, S. Menon, J. Oefelein, and V. Yang, “Validation of High-Fidelity CFD Simulations for Rocket Injector Design,” presented at 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Hartford, CT, 21-23 July 2008, paper AIAA 2008-5226.
http://dx.doi.org/10.2514/6.2008-5226
2.
D. E. Cameron, C. J. Bashor, and J. J. Collins, Nat. Rev. Microbiol. 12, 381 (2014).
http://dx.doi.org/10.1038/nrmicro3239
3.
J. J. Collins et al., Nature 509, 155 (2014).
http://dx.doi.org/10.1038/509155a
4.
S. R. McGuffee and A. H. Elcock, J. Am. Chem. Soc. 128, 12098 (2006).
http://dx.doi.org/10.1021/ja0614058
5.
S. R. McGuffee and A. H. Elcock, PLoS Comput. Biol. 6, e1000694 (2010).
http://dx.doi.org/10.1371/journal.pcbi.1000694
6.
T. Ando et al., J. Chem. Phys. 137, 064106 (2012).
http://dx.doi.org/10.1063/1.4742347
7.
T. Ando, E. Chow, and J. Skolnick, J. Chem. Phys. 139, 121922 (2013).
http://dx.doi.org/10.1063/1.4817660
8.
T. Ando and J. Skolnick, Proc. Natl. Acad. Sci. U. S. A. 107, 18457 (2010).
http://dx.doi.org/10.1073/pnas.1011354107
9.
T. Ando and J. Skolnick, Quantum Bioinf. IV 413, 28 (2011).
10.
P. Mereghetti and R. C. Wade, J. Phys. Chem. B 116, 8523 (2012).
http://dx.doi.org/10.1021/jp212532h
11.
T. Ando and J. Skolnick, Quantum Bioinform V 375, 30 (2013).
12.
T. Ando and J. Skolnick, Biophys. J. 104, 96 (2013).
http://dx.doi.org/10.1016/j.bpj.2012.11.3829
13.
T. Ando and J. Skolnick, PLoS Comput. Biol. 10, e1003990 (2014).
http://dx.doi.org/10.1371/journal.pcbi.1003990
14.
S. N. Arjunan and M. Tomita, Syst. Synth. Biol. 4, 35 (2010).
http://dx.doi.org/10.1007/s11693-009-9047-2
15.
Y. Nakayama, A. Kinoshita, and M. Tomita, Theor. Biol. Med. Modell. 2, 18 (2005).
http://dx.doi.org/10.1186/1742-4682-2-18
16.
K. Takahashi, S. N. Arjunan, and M. Tomita, FEBS Lett. 579, 1783 (2005).
http://dx.doi.org/10.1016/j.febslet.2005.01.072
17.
K. Takahashi et al., Bioinformatics 19, 1727 (2003).
http://dx.doi.org/10.1093/bioinformatics/btg221
18.
M. Tomita, Trends Biotechnol. 19, 205 (2001).
http://dx.doi.org/10.1016/S0167-7799(01)01636-5
19.
M. Tomita et al., Bioinformatics 15, 72 (1999).
http://dx.doi.org/10.1093/bioinformatics/15.1.72
20.
A. Yachie-Kinoshita et al., J. Biomed. Biotechnol. 2010, 642420.
http://dx.doi.org/10.1155/2010/642420
21.
H. Shimo et al., PLoS Comput. Biol. 11, e1004210 (2015).
http://dx.doi.org/10.1371/journal.pcbi.1004210
22.
J. A. Cole and Z. Luthey-Schulten, Isr. J. Chem. 54, 1219 (2014).
http://dx.doi.org/10.1002/ijch.201300147
23.
T. M. Earnest et al., Biophys. J. 109, 1117 (2015).
http://dx.doi.org/10.1016/j.bpj.2015.07.030
24.
J. R. Peterson et al., Archaea 2014, 898453.
http://dx.doi.org/10.1155/2014/898453
25.
I. C. Chou and E. O. Voit, BMC Syst. Biol. 6, 84 (2012).
http://dx.doi.org/10.1186/1752-0509-6-84
26.
S. Dolatshahi, L. L. Fonseca, and E. O. Voit, Mol. Biosyst. 12, 23 (2016).
http://dx.doi.org/10.1039/C5MB00331H
27.
S. Dolatshahi and E. O. Voit, Front. Genet. 7, 6 (2016).
http://dx.doi.org/10.3389/fgene.2016.00006
28.
A. Machina, A. Ponosov, and E. O. Voit, J. Biotechnol. 149, 154 (2010).
http://dx.doi.org/10.1016/j.jbiotec.2009.12.016
29.
E. O. Voit, Math. Biosci. 182, 81 (2003).
http://dx.doi.org/10.1016/S0025-5564(02)00162-1
30.
W. Yin and E. O. Voit, BMC Syst. Biol. 7, 20 (2013).
http://dx.doi.org/10.1186/1752-0509-7-20
31.
S. B. Zimmerman and S. O. Trach, J. Mol. Biol. 222, 599 (1991).
http://dx.doi.org/10.1016/0022-2836(91)90499-V
32.
K. Luby-Phelps, Int. Rev. Cytol. 192, 189 (2000).
http://dx.doi.org/10.1016/S0074-7696(08)60527-6
33.
R. Milo, BioEssays 35, 1050 (2013).
http://dx.doi.org/10.1002/bies.201300066
34.
S. B. Zimmerman, Biochim. Biophys. Acta 1216, 175 (1993).
http://dx.doi.org/10.1016/0167-4781(93)90142-Z
35.
S. B. Zimmerman and A. P. Minton, Annu. Rev. Biophys. Biomol. Struct. 22, 27 (1993).
http://dx.doi.org/10.1146/annurev.bb.22.060193.000331
36.
R. J. Ellis, Trends Biochem. Sci. 26, 597 (2001).
http://dx.doi.org/10.1016/S0968-0004(01)01938-7
37.
H. X. Zhou, G. Rivas, and A. P. Minton, Annu. Rev. Biophys. 37, 375 (2008).
http://dx.doi.org/10.1146/annurev.biophys.37.032807.125817
38.
E. Chen et al., Biochemistry 51, 9836 (2012).
http://dx.doi.org/10.1021/bi301324y
39.
D. Homouz et al., Biophys. J. 96, 671 (2009).
http://dx.doi.org/10.1016/j.bpj.2008.10.014
40.
Q. Wang et al., PLoS Comput. Biol. 7, e1002114 (2011).
http://dx.doi.org/10.1371/journal.pcbi.1002114
41.
S. Jin, P. M. Haggie, and A. S. Verkman, Biophys. J. 93, 1079 (2007).
http://dx.doi.org/10.1529/biophysj.106.102244
42.
A. S. Verkman, Methods Enzymol. 360, 635 (2003).
http://dx.doi.org/10.1016/S0076-6879(03)60132-1
43.
J. A. Dix, E. F. Hom, and A. S. Verkman, J. Phys. Chem. B 110, 1896 (2006).
http://dx.doi.org/10.1021/jp055840k
44.
K. Bacia, S. A. Kim, and P. Schwille, Nat. Methods 3, 83 (2006).
http://dx.doi.org/10.1038/nmeth822
45.
S. A. Kim et al., Biophys. J. 88, 4319 (2005).
http://dx.doi.org/10.1529/biophysj.104.055319
46.
M. B. Elowitz et al., J. Bacteriol. 181, 197 (1999).
47.
M. C. Konopka et al., J. Bacteriol. 188, 6115 (2006).
http://dx.doi.org/10.1128/JB.01982-05
48.
A. S. Verkman, Trends Biochem. Sci. 27, 27 (2002).
http://dx.doi.org/10.1016/S0968-0004(01)02003-5
49.
D. Ridgway et al., Biophys. J. 94, 3748 (2008).
http://dx.doi.org/10.1529/biophysj.107.116053
50.
E. Roberts et al., in Proceedings of the 2009 IEEE International Symposium on Parallel & Distributed Processing (IEEE Computer Society, 2009), p. 1.
http://dx.doi.org/10.1109/IPDPS.2009.5160930
51.
D. L. Ermak and J. A. Mccammon, J. Chem. Phys. 69, 1352 (1978).
http://dx.doi.org/10.1063/1.436761
52.
B. Zimm, J. Chem. Phys. 24, 269 (1953).
http://dx.doi.org/10.1063/1.1742462
53.
J. Brady and G. Bossis, Annu. Rev. Fluid Mech. 24, 111 (1988).
http://dx.doi.org/10.1146/annurev.fl.20.010188.000551
54.
J. F. Brady et al., J. Fluid Mech. 195, 257 (1988).
http://dx.doi.org/10.1017/S0022112088002411
55.
A. J. C. Ladd, Phys. Rev. Lett. 70, 1339 (1993).
http://dx.doi.org/10.1103/PhysRevLett.70.1339
56.
A. Malevanets and R. Kapral, J. Chem. Phys. 110, 8605 (1999).
http://dx.doi.org/10.1063/1.478857
57.
R. D. Groot and P. B. Warren, J. Chem. Phys. 107, 4423 (1997).
http://dx.doi.org/10.1063/1.474784
58.
D. Orsi et al., Phys. Rev. E 85, 011402 (2012).
http://dx.doi.org/10.1103/PhysRevE.85.011402
59.
C. Y. Chang and R. L. Powell, J. Fluid Mech. 253, 1 (1993).
http://dx.doi.org/10.1017/S0022112093001697
60.
C. Y. Chang and R. L. Powell, J. Fluid Mech. 281, 51 (1994).
http://dx.doi.org/10.1017/S0022112094003034
61.
P. G. De Gennes, Macromolecules 9, 594 (1976).
http://dx.doi.org/10.1021/ma60052a012
62.
C. W. Oseen, Neuere Methoden und Ergebnisse in der Hydrodynamik (Akademische Verlagsgesellschaft, Leipzig, 1927).
63.
H. Yamakawa, J. Chem. Phys. 53, 436 (1970).
http://dx.doi.org/10.1063/1.1673799
64.
R. J. Phillips, J. F. Brady, and G. Bossis, Phys. Fluids 31, 3462 (1988).
http://dx.doi.org/10.1063/1.866914
65.
G. Bossis and J. F. Brady, J. Chem. Phys. 87, 5437 (1987).
http://dx.doi.org/10.1063/1.453708
66.
R. Kubo, Rep. Prog. Phys. 29, 255 (1966).
http://dx.doi.org/10.1088/0034-4885/29/1/306
67.
M. Fixman, Macromolecules 19, 1204 (1986).
http://dx.doi.org/10.1021/ma00158a043
68.
A. Saadat and B. Khomami, J. Chem. Phys. 140, 184903 (2014).
http://dx.doi.org/10.1063/1.4873999
69.
T. Schlick, Molecular Modeling and Simulation: An Interdisciplinary Guide, Interdisciplinary Applied Mathematics (Springer, New York, 2002), Vol. 21.
70.
P. Szymczak and M. Cieplak, J. Phys.: Condens. Matter 23, 033102 (2011).
http://dx.doi.org/10.1088/0953-8984/23/3/033102
71.
L. Durlofsky, J. F. Brady, and G. Bossis, J. Fluid Mech. 180, 21 (1987).
http://dx.doi.org/10.1017/S002211208700171X
72.
D. J. Jeffrey and Y. Onishi, J. Fluid Mech. 139, 261 (1984).
http://dx.doi.org/10.1017/S0022112084000355
73.
C. W. J. Beenakker, J. Chem. Phys. 85, 1581 (1986).
http://dx.doi.org/10.1063/1.451199
74.
B. Carrasco and J. Garcia de la Torre, Biophys. J. 76, 3044 (1999).
http://dx.doi.org/10.1016/S0006-3495(99)77457-6
75.
J. Garcia De La Torre, M. L. Huertas, and B. Carrasco, Biophys. J. 78, 719 (2000).
http://dx.doi.org/10.1016/s0006-3495(00)76630-6
76.
J. Garcia De La Torre, A. Jimenez, and J. J. Freire, Macromolecules 15, 148 (1982).
http://dx.doi.org/10.1021/ma00229a030
77.
P. Mereghetti, R. R. Gabdoulline, and R. C. Wade, Biophys. J. 99, 3782 (2010).
http://dx.doi.org/10.1016/j.bpj.2010.10.035
78.
R. Swaminathan, C. P. Hoang, and A. S. Verkman, Biophys. J. 72, 1900 (1997).
http://dx.doi.org/10.1016/S0006-3495(97)78835-0
79.
B. R. Terry, E. K. Matthews, and J. Haseloff, Biochem. Biophys. Res. Commun. 217, 21 (1995).
http://dx.doi.org/10.1006/bbrc.1995.2740
80.
A. Nenninger, G. Mastroianni, and C. W. Mullineaux, J. Bacteriol. 192, 4535 (2010).
http://dx.doi.org/10.1128/JB.00284-10
81.
M. Kumar, M. S. Mommer, and V. Sourjik, Biophys. J. 98, 552 (2010).
http://dx.doi.org/10.1016/j.bpj.2009.11.002
82.
F. Roosen-Runge et al., Proc. Natl. Acad. Sci. U. S. A. 108, 11815 (2011).
http://dx.doi.org/10.1073/pnas.1107287108
83.
M. Gao and J. Skolnick, Proc. Natl. Acad. Sci. U. S. A. 107, 22517 (2010).
http://dx.doi.org/10.1073/pnas.1012820107
84.
S. Tonddast-Navaei and J. Skolnick, J. Chem. Phys. 143, 243149 (2015).
http://dx.doi.org/10.1063/1.4937428
85.
T. Stellberger et al., Proteome Sci. 8, 8 (2010).
http://dx.doi.org/10.1186/1477-5956-8-8
86.
C. W. J. Beenakker and P. Mazur, Physica A 126, 349 (1984).
http://dx.doi.org/10.1016/0378-4371(84)90206-1
87.
R. C. Ball and J. R. Melrose, Physica A 247, 444 (1997).
http://dx.doi.org/10.1016/S0378-4371(97)00412-3
88.
A. Kumar and J. J. L. Higdon, Phys. Rev. E 82, 051401 (2010).
http://dx.doi.org/10.1103/physreve.82.051401
89.
M. Bybee, Ph.D. thesis, University of Illinois at Urbana-Champaign, 2009, available at https://www.ideals.illinois.edu/handle/2142/11616.
90.
A. Kumar, Ph.D. thesis, University of Illinois at Urbana-Champaign, 2010, available at https://www.ideals.illinois.edu/handle/2142/16032.
91.
F. Torres and J. Gilbert, “Large-Scale Stokesian Dynamics Simulations of Non-Brownian Suspensions,” Technical Report C9600004, Xerox Research Centre of Canada, 1996.
92.
E. Chow and J. Skolnick, Proc. Natl. Acad. Sci. U. S. A. 112, 14846 (2015).
http://dx.doi.org/10.1073/pnas.1514757112
93.
B. N. Kholodenko, J. B. Hoek, and H. V. Westerhoff, Trends Cell Biol. 10, 173 (2000).
http://dx.doi.org/10.1016/S0962-8924(00)01741-4
94.
J. A. Morrone, J. Li, and B. J. Berne, J. Phys. Chem. B 116, 378 (2012).
http://dx.doi.org/10.1021/jp209568n
95.
M. Dlugosz and J. M. Antosiewicz, J. Phys. Chem. B 119, 8425 (2015).
http://dx.doi.org/10.1021/acs.jpcb.5b04675
96.
J. Li, J. A. Morrone, and B. J. Berne, J. Phys. Chem. B 116, 11537 (2012).
http://dx.doi.org/10.1021/jp307466r
97.
J. Skolnick, M. Gao, and H. Zhou, F1000Research 5, 207 (2016).
http://dx.doi.org/10.12688/f1000research.7374.1
98.
J. Norberg and L. Nilsson, Biophys. J. 79, 1537 (2000).
http://dx.doi.org/10.1016/S0006-3495(00)76405-8
http://aip.metastore.ingenta.com/content/aip/journal/jcp/145/10/10.1063/1.4962258
Loading
/content/aip/journal/jcp/145/10/10.1063/1.4962258
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/145/10/10.1063/1.4962258
2016-09-08
2016-10-01

Abstract

An outstanding challenge in computational biophysics is the simulation of a living cell at molecular detail. Over the past several years, using Stokesian dynamics, progress has been made in simulating coarse grained molecular models of the cytoplasm. Since macromolecules comprise 20%-40% of the volume of a cell, one would expect that steric interactions dominate macromolecular diffusion. However, the reduction in cellular diffusion rates relative to infinite dilution is due, roughly equally, to steric and hydrodynamic interactions, HI, with nonspecific attractive interactions likely playing rather a minor role. HI not only serve to slow down long time diffusion rates but also cause a considerable reduction in the magnitude of the short time diffusion coefficient relative to that at infinite dilution. More importantly, the long range contribution of the Rotne-Prager-Yamakawa diffusion tensor results in temporal and spatial correlations that persist up to microseconds and for intermolecular distances on the order of protein radii. While HI slow down the bimolecular association rate in the early stages of lipid bilayer formation, they accelerate the rate of large scale assembly of lipid aggregates. This is suggestive of an important role for HI in the self-assembly kinetics of large macromolecular complexes such as tubulin. Since HI are important, questions as to whether continuum models of HI are adequate as well as improved simulation methodologies that will make simulations of more complex cellular processes practical need to be addressed. Nevertheless, the stage is set for the molecular simulations of ever more complex subcellular processes.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/145/10/1.4962258.html;jsessionid=G4UaB4fBjTJPZCNoSIwyGxN2.x-aip-live-02?itemId=/content/aip/journal/jcp/145/10/10.1063/1.4962258&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/145/10/10.1063/1.4962258&pageURL=http://scitation.aip.org/content/aip/journal/jcp/145/10/10.1063/1.4962258'
Right1,Right2,Right3,