Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/145/10/10.1063/1.4962324
1.
P. G. Debenedetti and F. H. Stillinger, Nature 410, 259 (2001).
http://dx.doi.org/10.1038/35065704
2.
L. Berthier and G. Biroli, Rev. Mod. Phys. 83, 587 (2011).
http://dx.doi.org/10.1103/RevModPhys.83.587
3.
K. L. Ngai, Relaxation and Diffusion in Complex Systems (Springer, 2011).
4.
C. M. Roland, S. Hensel-Bielowka, M. Paluch, and R. Casalini, Rep. Prog. Phys. 68, 1405 (2005).
http://dx.doi.org/10.1088/0034-4885/68/6/R03
5.
C. Alba-Simionesco, A. Cailliaux, A. Alegría, and G. Tarjus, Europhys. Lett. 68, 58 (2004).
http://dx.doi.org/10.1209/epl/i2004-10214-6
6.
R. Casalini and C. M. Roland, Phys. Rev. E 69, 062501 (2004).
http://dx.doi.org/10.1103/PhysRevE.69.062501
7.
S. Pawlus, R. Casalini, C. M. Roland, M. Paluch, S. J. Rzoska, and J. Ziolo, Phys. Rev. E 70, 061501 (2004).
http://dx.doi.org/10.1103/PhysRevE.70.061501
8.
N. P. Bailey, U. R. Pedersen, N. Gnan, T. B. Schrøder, and J. C. Dyre, J. Chem. Phys. 129, 184507 (2008).
http://dx.doi.org/10.1063/1.2982247
9.
U. R. Pedersen, N. Gnan, N. P. Bailey, T. B. Schrøder, and J. C. Dyre, J. Non-Cryst. Solids 357, 320 (2011).
http://dx.doi.org/10.1016/j.jnoncrysol.2010.06.063
10.
J. C. Dyre, J. Phys. Chem. B 118, 10007 (2014).
http://dx.doi.org/10.1021/jp501852b
11.
K. L. Ngai, J. Habasaki, D. Prevosto, S. Capaccioli, and M. Paluch, J. Chem. Phys. 137, 034511 (2012).
http://dx.doi.org/10.1063/1.4736547
12.
R. Casalini and C. M. Roland, Phys. Rev. Lett. 113, 085701 (2014).
http://dx.doi.org/10.1103/PhysRevLett.113.085701
13.
U. R. Pedersen, N. P. Bailey, T. B. Schrøder, and J. C. Dyre, Phys. Rev. Lett. 100, 015701 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.015701
14.
D. Gundermann, U. R. Pedersen, T. Hecksher, N. P. Bailey, B. Jakobsen, T. Christensen, N. B. Olsen, T. B. Schroder, D. Fragiadakis, R. Casalini, C. Michael Roland, J. C. Dyre, and K. Niss, Nat. Phys. 7, 816 (2011).
http://dx.doi.org/10.1038/nphys2031
15.
D. Fragiadakis, R. Casalini, R. B. Bogoslovov, C. G. Robertson, and C. M. Roland, Macromolecules 44, 1149 (2011).
http://dx.doi.org/10.1021/ma102795w
16.
K. Adrjanowicz, Z. Wojnarowska, M. Paluch, and J. Pionteck, J. Phys. Chem. B 115, 4559 (2011).
http://dx.doi.org/10.1021/jp109135w
17.
A. Grzybowski, K. Koperwas, and M. Paluch, Phys. Rev. E 86, 031501 (2012).
http://dx.doi.org/10.1103/PhysRevE.86.031501
18.
T. B. Schrøder, U. R. Pedersen, N. P. Bailey, S. Toxvaerd, and J. C. Dyre, Phys. Rev. E 80, 041502 (2009).
http://dx.doi.org/10.1103/PhysRevE.80.041502
19.
D. Coslovich and C. M. Roland, J. Chem. Phys. 130, 014508 (2009).
http://dx.doi.org/10.1063/1.3054635
20.
N. Gnan, T. B. Schrøder, U. R. Pedersen, N. P. Bailey, and J. C. Dyre, J. Chem. Phys. 131, 234504 (2009).
http://dx.doi.org/10.1063/1.3265957
21.
F. Hummel, G. Kresse, J. C. Dyre, and U. R. Pedersen, Phys. Rev. B 92, 174116 (2015).
http://dx.doi.org/10.1103/PhysRevB.92.174116
22.
C. M. Roland, S. Bair, and R. Casalini, J. Chem. Phys. 125, 124508 (2006).
http://dx.doi.org/10.1063/1.2346679
23.
Y. Cheng, E. Ma, and H. W. Sheng, Phys. Rev. Lett. 102, 245501 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.245501
24.
S. Plimpton, J. Comput. Phys. 117, 1 (1995).
http://dx.doi.org/10.1006/jcph.1995.1039
25.
R. Casalini, R. F. Gamache, and C. M. Roland, J. Chem. Phys. 135, 224501 (2011).
http://dx.doi.org/10.1063/1.3664180
26.
K. Samwer, R. Busch, and W. L. Johnson, Phys. Rev. Lett. 82, 580 (1999).
http://dx.doi.org/10.1103/PhysRevLett.82.580
27.
L. Bøhling, T. S. Ingebrigtsen, A. Grzybowski, M. Paluch, J. C. Dyre, and T. B. Schrøder, New J. Phys. 14, 113035 (2012).
http://dx.doi.org/10.1088/1367-2630/14/11/113035
28.
R. Casalini, U. Mohanty, and C. M. Roland, J. Chem. Phys. 125, 014505 (2006).
http://dx.doi.org/10.1063/1.2206582
29.
I. Avramov, J. Non-Cryst. Solids 262, 258 (2000).
http://dx.doi.org/10.1016/S0022-3093(99)00712-7
30.
R. Casalini and C. M. Roland, J. Non-Cryst. Solids 353, 3936 (2007).
http://dx.doi.org/10.1016/j.jnoncrysol.2007.03.026
31.
W. Kob, C. Donati, S. J. Plimpton, P. H. Poole, and S. C. Glotzer, Phys. Rev. Lett. 79, 2827 (1997).
http://dx.doi.org/10.1103/PhysRevLett.79.2827
32.
N. Lačevič, F. W. Starr, T. B. Schrøder, and S. C. Glotzer, J. Chem. Phys. 119, 7372 (2003).
http://dx.doi.org/10.1063/1.1605094
33.
D. Coslovich and C. M. Roland, J. Chem. Phys. 131, 151103 (2009).
http://dx.doi.org/10.1063/1.3250938
34.
L. Berthier, G. Biroli, J.-P. Bouchaud, L. Cipelletti, D. E. Masri, D. L’Hôte, F. Ladieu, and M. Pierno, Science 310, 1797 (2005).
http://dx.doi.org/10.1126/science.1120714
35.
A. Jaiswal, T. Egami, and Y. Zhang, Phys. Rev. B 91, 134204 (2015).
http://dx.doi.org/10.1103/PhysRevB.91.134204
36.
A. A. Veldhorst, J. C. Dyre, and T. B. Schrøder, J. Chem. Phys. 143, 194503 (2015).
http://dx.doi.org/10.1063/1.4934973
37.
Y. C. Hu, F. X. Li, M. Z. Li, H. Y. Bai, and W. H. Wang, Nat. Commun. 6, 8310 (2015).
http://dx.doi.org/10.1038/ncomms9310
38.
C. M. Roland, R. Casalini, and M. Paluch, Chem. Phys. Lett. 367, 259 (2003).
http://dx.doi.org/10.1016/S0009-2614(02)01655-X
39.
K. L. Ngai, R. Casalini, S. Capaccioli, M. Paluch, and C. M. Roland, J. Phys. Chem. B 109, 17356 (2005).
http://dx.doi.org/10.1021/jp053439s
40.
N. L. Ellegaard, T. Christensen, P. V. Christiansen, N. B. Olsen, U. R. Pedersen, T. B. Schrøder, and J. C. Dyre, J. Chem. Phys. 126, 074502 (2007).
http://dx.doi.org/10.1063/1.2434963
41.
C. M. Roland, J. L. Feldman, and R. Casalini, J. Non-Cryst. Solids 352, 4895 (2006).
http://dx.doi.org/10.1016/j.jnoncrysol.2006.02.149
42.
G. Duan, M. L. Lind, M. D. Demetriou, W. L. Johnson, W. A. Goddard, T. Çag̀in, and K. Samwer, Appl. Phys. Lett. 89, 151901 (2006).
http://dx.doi.org/10.1063/1.2360203
43.
F. D. Murnaghan, Proc. Natl. Acad. Sci. U. S. A. 30, 244 (1944).
http://dx.doi.org/10.1073/pnas.30.9.244
44.
J. Q. Wang and H. Y. Bai, Scr. Mater. 61, 453 (2009).
http://dx.doi.org/10.1016/j.scriptamat.2009.04.044
45.
D. Fragiadakis and C. M. Roland, J. Chem. Phys. 134, 044504 (2011).
http://dx.doi.org/10.1063/1.3532545
46.
D. Coslovich and C. M. Roland, J. Phys. Chem. B 112, 1329 (2008).
http://dx.doi.org/10.1021/jp710457e
47.
L. Berthier and G. Tarjus, Phys. Rev. Lett. 103, 170601 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.170601
48.
L. Bøhling, A. A. Veldhorst, T. S. Ingebrigtsen, N. P. Bailey, J. S. Hansen, S. Toxvaerd, T. B. Schrøder, and J. C. Dyre, J. Phys.: Condens. Matter 25, 032101 (2013).
http://dx.doi.org/10.1088/0953-8984/25/3/032101
49.
W. Xiao, J. Tofteskov, T. V. Christensen, J. C. Dyre, and K. Niss, J. Non-Cryst. Solids 407, 190 (2015).
http://dx.doi.org/10.1016/j.jnoncrysol.2014.08.041
http://aip.metastore.ingenta.com/content/aip/journal/jcp/145/10/10.1063/1.4962324
Loading
/content/aip/journal/jcp/145/10/10.1063/1.4962324
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/145/10/10.1063/1.4962324
2016-09-12
2016-09-30

Abstract

A ternary metallic glass-forming liquid is found to be not strongly correlating thermodynamically, but its average dynamics, dynamic heterogeneities including the high order dynamic correlation length, and static structure are still well described by thermodynamic scaling with the same scaling exponent . This may indicate that the metallic liquid could be treated as a single-parameter liquid. As an intrinsic material constant stemming from the fundamental interatomic interactions, is theoretically predicted from the thermodynamic fluctuations of the potential energy and the virial. Although is conventionally understood merely from the repulsive part of the inter-particle potentials, the strong correlation between and the Grüneisen parameter up to the accuracy of the Dulong-Petit approximation demonstrates the important roles of anharmonicity and attractive force of the interatomic potential in governing glass transition of metallic glassformers. These findings may shed light on how to understand metallic glass formation from the fundamental interatomic interactions.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/145/10/1.4962324.html;jsessionid=OA95uhhUnDpkW3Nr__gZHHaa.x-aip-live-06?itemId=/content/aip/journal/jcp/145/10/10.1063/1.4962324&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/145/10/10.1063/1.4962324&pageURL=http://scitation.aip.org/content/aip/journal/jcp/145/10/10.1063/1.4962324'
Right1,Right2,Right3,