Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
D. Delongchamp and P. T. Hammond, “Layer-by-Layer assembly of PEDOT/polyaniline electrochromic devices,” Adv. Mater. 13, 14551459 (2001).<1455::AID-ADMA1455>3.0.CO;2-7
S. Roy, S. Kundu, S. K. Roy, and A. J. Pal, “Impedance characteristics of layer-by-layer electrostatic self-assembled films of evans blue,” Mater. Chem. Phys. 77, 784790 (2002).
V. Zucolotto, P. J. Strack, F. R. Santos, D. T. Balogh, C. J. L. Constantino, C. R. Mendonca, and O. N. Oliveira, Jr., “Molecular engineering strategies to control photo-induced birefringence and surface-relief gratings on layer-by-layer films from an azopolymer,” Thin Solid Films 453, 110113 (2004).
Q. Ferreira, P. A. Ribeiro, O. N. Oliveira, Jr., and M. Raposo, “Long-term stability at high temperatures for birefringence in PAZO/PAH layer-by-layer films,” Appl. Mater. Interfaces 4, 14701477 (2012).
B. G. Geest, C. Déjugnat, E. Verhoeven, G. B. Sukhorukov, A. M. Jonas, J. Plain, J. Demeester, and S. C. Smedt, “Layer-by-layer coating of degradable microgels for pulsed drug delivery,” J. Controlled Release 116, 159169 (2006).
A. Riul, Jr., D. S. Dos Santos, Jr., K. Wohnrath, R. Di Tommazo, A. C. P. L. F. Carvalho, F. J. Fonseca, O. N. Oliveira, Jr., D. M. Taylor, and L. H. C. Mattoso, “Artificial taste Sensor: Efficient combination of sensors made from Langmuir–Blodgett films of conducting polymers and a ruthenium complex and self-assembled films of an azobenzene-containing polymer,” Langmuir 18, 239245 (2002).
T. Hoshi, N. Sagae, K. Daikuhara, and J.-I. Anzai, “Multilayer membranes via layer-by-layer deposition of ascorbate oxidase and Au nanoparticles on the Pt electrode for reduction of oxidation current derived from ascorbate,” Talanta 71, 644647 (2007).
M. D. Shirsat, C. O. Too, and G. G. Wallace, “Amperometric glucose biosensor on layer by layer assembled carbon nanotube and polypyrrole multilayer film,” Electroanalysis 20, 150156 (2008).
A. C. N. Silva, D. K. Deda, C. C. Bueno, A. S. Moraes, A. L. Roz, F. M. Yamaji, R. A. Prado, V. Viviani, O. N. Oliveira, Jr., and F. L. Leite, “Nanobiosensors exploiting specific interactions between an enzyme and herbicides in atomic force spectroscopy,” J. Nanosci. Nanotechnol. 14, 66786684 (2014).
K. Ariga, Y. Yamauchi, G. Rydzek, Q. Ji, Y. Yonamine, K. C.-W. Wu., and J. P. Hill, “Layer-by-layer nanoarchitectonics: Invention, innovation, and evolution,” Chem. Lett. 43, 3668 (2014).
I. L. Radtchenko, G. B. Sukhorukov, S. Leporatti, G. B. Khomutov, E. Donath, and H. Möhwald, “Assembly of alternated multivalent ion/polyelectrolyte layers on colloidal particles. Stability of the multilayers and encapsulation of macromolecules into polyelectrolyte capsules,” J. Colloid Interface Sci. 230(2), 272280 (2000).
C. M. Daikuzono, C. A. R. Dantas, D. Volpati, C. J. L. Constantino, M. H. O. Piazzetta, A. L. Gobbi, D. M. Taylor, O. N. Oliveira, Jr., and A. Riul, Jr., “Microfluidic electronic tongue,” Sens. Actuators, B 207, 11291135 (2015).
L. M. Sáiz, I. A. Zucchi, P. A. Oyanguren, M. J. Galante, R. C. Sanfelice, D. T. Balogh, and O. N. Oliveira, Jr., “Effect of molecular architectures in photoinduced birefringence in films of azo-modified diblock copolymers,” Opt. Mater. 37, 816822 (2014).
E. H. Kang, T. Bu, P. Jin, J. Sun, Y. Yang, and J. Shen, “Layer-by-layer deposited organic/inorganic hybrid multilayer films containing noncentrosymmetrically orientated azobenzene chromophores,” Langmuir 23, 75947601 (2007).
K. Yang, S. Balasubramanian, X. Wang, J. Kumar, and S. Tripathy, “Electroabsorption spectroscopy study of an azopolymer film fabricated by electrostatic adsorption,” Appl. Phys. Lett. 73, 33453347 (1998).
S. Bauer, “Poled polymers for sensors and photonic applications,” J. Appl. Phys. 80, 55315558 (1996).
T. Shioda, D. H. Chung, Y. Takanishi, K. Ishikawa, B. Park, and H. Takezoe, “Axial and polar orientational changes by rubbing/photoalignment processes in a liquid crystal alignment layer studied by optical second-harmonic generation,” Jpn. J. Appl. Phys., Part 1 40, 23872390 (2001).
V. Rodriguez, F. Lagugné-Labarthet, and C. Sourisseau, “Orientation distribution functions based upon both 〈P1〉, 〈P3〉 order parameters and upon the four 〈P1〉 up to 〈P4〉 values: Application to an electrically poled nonlinear optical azopolymer film,” Appl. Spectrosc. 59, 322328 (2005).
R. D. Schaller, R. J. Saykally, Y. R. Shen, and F. Lagugné-Labarthet, “Poled polymer thin-film gratings studied with far-field optical diffraction and second-harmonic near-field microscopy,” Opt. Lett. 28, 12961298 (2003).
S.-H. Lee, S. Balasubramanian, D. Y. Kim, N. K. Viswanathan, S. Bian, J. Kumar, and S. K. Tripathy, “Azo polymer multilayer films by electrostatic self-assembly and layer-by-layer post azo functionalization,” Macromolecules 33, 65346540 (2000).
A. Garg, R. M. Davis, C. Durak, J. R. Heflin, and H. W. Gibson, “Polar orientation of a pendant anionic chromophore in thick layer-by-layer self-assembled polymeric films,” J. Appl. Phys. 104, 053116 (2008).
J. L. Casson, D. W. McBranch, J. M. Robinson, H. L. Wang, J. B. Roberts, P. A. Chiarelli, and M. S. Johal, “Reversal of interfacial dipole orientation in polyelectrolyte superlattices due to polycationic layers,” J. Phys. Chem. B 104, 1199612001 (2000).
J. L. Casson, H. L. Wang, J. B. Roberts, A. N. Parikh, J. M. Robinson, and M. S. Johal, “Kinetics and interpenetration of ionically self-assembled dendrimer and PAZO multilayers,” J. Phys. Chem. B 106, 16971702 (2002).
G. Aldea-Nunzi, S. W. Chan, K. Y. K. Man, and J. M. Nunzi, “All-optical poling and second harmonic generation diagnostic of layer-by-layer assembled photoactive polyelectrolytes,” Chem. Phys. 420, 714 (2013).
G. Aldea, H. Gutiérrez, J.-M. Nunzi, G. C. Chitanu, M. Sylla, and B. C. Simionescu, “Second harmonic generation diagnostic of layer-by-layer deposition from Disperse red 1—Functionalized maleic anhydride copolymer,” Opt. Mater. 29, 16401646 (2007).
C. Anceau, S. Brasselet, and J. Zyss, “Local orientational distribution of molecular monolayers probed by nonlinear microscopy,” Chem. Phys. Lett. 411, 98102 (2005).
B. Park, Y. Kinoshita, T. Sakai, J.-G. Yoo, H. Hoshi, K. Ishikawa, and H. Takezoe, “Determination of orientational distribution function of organic molecular surfaces using the modified maximum-entropy method,” Phys. Rev. E 57, 67176724 (1998).
B. Park, H. S. Kim, J. Y. Bae, J. G. Lee, H. S. Woo, S. H. Han, J. W. Wu, M. Kakimoto, and H. Takezoe, “Orientation of a photo-sensitive polymeric monolayer studied by second-harmonic generation,” Appl. Phys. B 66, 445451 (1998).
S. Schrader, V. Zauls, B. Dietzel, C. Flueraru, D. Prescher, J. Reiche, H. Motschmann, and L. Brehmer, “Linear and nonlinear optical properties of Langmuir–Blodgett multilayers from chromophore-containing maleic acid anhydride polymers,” Mater. Sci. Eng. C 8-9, 527537 (1999).
Y. W. Yi, T. E. Furtak, M. J. Farrow, and D. M. Walba, “Photoinduced anisotropy of second-harmonic generation from azobenzene-modified alkylsiloxane monolayers,” J. Vac. Sci. Technol., A 21, 17701775 (2003).
P. Zhu, M. E. Van der Boom, H. Kang, G. Evmenenko, P. Dutta, and T. J. Marks, “Realization of expeditious layer-by-layer siloxane-based self-assembly as an efficient route to structurally regular acentric superlattices with large electro-optic responses,” Chem. Mater. 14, 49824989 (2002).
W. Lin, W. Lin, G. K. Wong, and T. J. Marks, “Supramolecular approaches to second-order nonlinear optical materials. Self-assembly and microstructural characterization of intrinsically acentric [(aminophenyl)azo]pyridinium superlattices,” J. Am. Chem. Soc. 118, 80348042 (1996).
H. E. Katz, W. L. Wilson, and G. Scheller, “Chromophore structure, second harmonic generation, and orientational order in zirconium phosphonate/phosphate self-assembled multilayers,” J. Am. Chem. Soc. 116, 66366640 (1994).
K. Sahu, K. B. Eisenthal, and F. Mcneil, “Competitive adsorption at the air-water interface: A second harmonic generation study,” J. Phys. Chem. C 115, 97019705 (2011).
Y. Niidome, S. Tagawa, and S. Yamada, “Adsorption behaviors of methyl orange to alternate polyion films as studied by in-situ absorption and second harmonic generation measurements,” Colloids Surf., A 198-200, 467472 (2002).
S. A. Mitchell, “Indole adsorption to a lipid monolayer studied by optical second harmonic generation,” J. Phys. Chem. B 113, 1069310707 (2009).
G. J. Ashwell, T. W. Walker, and P. Leeson, “Improved second-harmonic generation from langmuir-blodgett films,” Langmuir 14, 15251527 (1998).
P. Hedge, Z. Ali-Adib, D. West, and T. King, “Efficient second-harmonic generation from thick all-polymeric langmuir-blodgett films,” Macromolecules 26, 17891792 (1993).
J. R. Heflin, C. Figura, D. Marciu, Y. Liu, and R. O. Claus, “Thickness dependence of second-harmonic generation in thin films fabricated from ionically self-assembled monolayers,” Appl. Phys. Lett. 74, 495497 (1999).
Y. R. Shen, “Surfaces probed by nonlinear optics,” Surf. Sci. 299/300, 551562 (1994).
R. W. Boyd, Nonlinear Optics, 2nd ed. (Academic Press, New York, 2004).
Y. R. Shen, in The Principles of Nonlinear Optics, 1st ed. (Academic Press, San Diego, CA, 1988), Chap. 25.
A. G. Lambert, P. B. Davis, and D. J. Neivandt, “Implementing the theory of sum frequency generation vibrational spectroscopy: A tutorial review,” Appl. Spectrosc. Rev. 40, 103145 (2005).
M. B. Feller, W. Chen, and Y. R. Shen, “Investigation of surface-induced alignment of liquid-crystal molecules by optical second-harmonic generation,” Phys. Rev. A 43, 67786792 (1992).
F. J. S. Lopes, “Estudo da orientação molecular em filmes automontados de azopolímeros por meio da técnica de geração de segundo harmônico (SHG),” M.S. dissertation,University of São Paulo, São Carlos, Brazil, 2006
B. Jérôme and Y. R. Shen, “Anchoring of nematic liquid crystals on mica in the presence of volatile molecules,” Phys. Rev. E 48, 45564574 (1993).
X. Zhuang, “Nonlinear optical studies of liquid crystals and polymers,” Ph.D. thesis, University of California, Berkeley, 1996.
W. Chen, “Linear and nonlinear optical studies of liquid crystals interfaces,” Ph.D. thesis,University of California, Berkeley, 1996.
N. C. De Sousa, V. Zucolotto, J. R. Silva, D. S. Santos, Jr., O. N. Oliveira, Jr., and J. A. Giacometti, “Morphology characterization of layer-by-layer films from PAH/MA-co-DR13: The role of film thickness,” J. Colloid Interface Sci. 285, 544550 (2005).
H. S. Silva, T. M. Uehara, K. Bergamaski, and P. B. Miranda, “Molecular ordering in layer-by-layer polyelectrolyte films studied by sum-frequency vibrational spectroscopy: The effects of drying procedures,” J. Nanosci. Nanotechnol. 8, 33993405 (2008).
X. Zhuang, P. B. Miranda, D. Kim, and Y. R. Shen, “Mapping molecular orientation and conformation at interfaces by surface nonlinear optics,” Phys. Rev. B 59(19), 1263212640 (1999).
S. Cattaneo, K. Miettinen, E. Vuorimaa, H. Lemmetyinen, and M. Kauranen, “Linear optics in the second-order characterization of thin films,” Chem. Phys. Lett. 419, 492495 (2006).
R. Superfine, J. Y. Huang, and Y. R. Shen, “Phase measurement for surface infrared–visible sum-frequency generation,” Opt. Lett. 15, 12761278 (1990).
H. S. Silva and P. B. Miranda, “Molecular ordering of layer-by-layer polyelectrolyte films studied by sum-frequency vibrational spectroscopy,” J. Phys. Chem. B 113, 1006810071 (2009).

Data & Media loading...


Article metrics loading...



Molecular orientation within azopolymer thin films is important for their nonlinear optical properties and photonic applications. We have used optical second-harmonic generation (SHG) to study the molecular orientation of Layer-by-Layer (LbL) films of a cationic polyelectrolyte (poly(allylamine hydrochloride)) and an anionic polyelectrolyte containing azochromophore side groups (MA-co-DR13) on a glass substrate. The SHG measurements indicate that there is a preferential orientation of the azochromophores in the film, leading to a significant optical nonlinearity. However, both the signal strength and its anisotropy are not homogeneous throughout the sample, indicating the presence of large orientational domains. This is corroborated with Brewster angle microscopy. The average SHG signal does not increase with film thickness, in contrast to some reports in the literature, indicating an independent orientational order for successive bilayers. Analyzing the SHG signal as a function of the input and output polarizations, a few parameters of the azochromophore orientational distribution can be deduced. Fitting the SHG signal to a simple model distribution, we have concluded that the chromophores have an angular distribution with a slight in-plane anisotropy and a mean polar angle ranging from 45° to 80° with respect to substrate normal direction, with a relatively large width of about 25°. These results show that SHG is a powerful technique for a detailed investigation of the molecular orientation in azopolymer LbL films, allowing a deeper understanding of their self-assembling mechanism and nonlinear optical properties. The inhomogeneity and anisotropy of these films may have important consequences for their applications in nonlinear optical devices.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd