Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/145/10/10.1063/1.4962342
1.
M. Imada, A. Fujimori, and Y. Tokura, Rev. Mod. Phys. 70, 1039 (1998).
http://dx.doi.org/10.1103/RevModPhys.70.1039
2.
A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, Rev. Mod. Phys. 68, 13 (1996).
http://dx.doi.org/10.1103/RevModPhys.68.13
3.
D. N. Basov, R. D. Averitt, D. van der Marel, M. Dressel, and K. Haule, Rev. Mod. Phys. 83, 471 (2011).
http://dx.doi.org/10.1103/RevModPhys.83.471
4.
E. Dagotto, Science 309, 257 (2005).
http://dx.doi.org/10.1126/science.1107559
5.
P. A. Lee, N. Nagaosa, and X.-G. Wen, Rev. Mod. Phys. 78, 17 (2006).
http://dx.doi.org/10.1103/RevModPhys.78.17
6.
E. Dagotto, T. Hotta, and A. Moreo, Phys. Rep. 344, 1 (2001).
http://dx.doi.org/10.1016/S0370-1573(00)00121-6
7.
M. M. Qazilbash, M. Brehm, B.-G. Chae, P.-C. Ho, G. O. Andreev, B.-J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H.-T. Kim, and D. N. Basov, Science 318, 1750 (2007).
http://dx.doi.org/10.1126/science.1150124
8.
A. Zabet-Khosousi and A.-A. Dhirani, Chem. Rev. 108, 4072 (2008).
http://dx.doi.org/10.1021/cr0680134
9.
P.-E. Trudeau, A. Escorcia, and A.-A. Dhirani, J. Chem. Phys. 119, 5267 (2003).
http://dx.doi.org/10.1063/1.1597871
10.
K. K. Likharev, Proc. IEEE 87, 606 (1999).
http://dx.doi.org/10.1109/5.752518
11.
A. J. Houtepen, D. Kockmann, and D. Vanmaekelbergh, Nano Lett. 8, 3516 (2008).
http://dx.doi.org/10.1021/nl8020347
12.
M. M. A. Yajadda, K.-H. Müller, and K. Ostrikov, Phys. Rev. B 84, 235431 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.235431
13.
D. Conklin, S. Nanayakkara, T.-H. Park, M. F. Lagadec, J. T. Stecher, M. J. Therien, and D. A. Bonnell, Nano Lett. 12, 2414 (2012).
http://dx.doi.org/10.1021/nl300400a
14.
M. Tie, P. Joanis, Y. Suganuma, and A.-A. Dhirani, Phys. Rev. B 89, 155117 (2014).
http://dx.doi.org/10.1103/PhysRevB.89.155117
15.
C.-W. Jiang, I. Ni, S.-D. Tzeng, and W. Kuo, Appl. Phys. Lett. 101, 083105 (2012).
http://dx.doi.org/10.1063/1.4747322
16.
J. M. Wessels, H.-G. Nothofer, W. E. Ford, F. von Wrochem, F. Scholz, T. Vossmeyer, A. Schroedter, H. Weller, and A. Yasuda, J. Am. Chem. Soc. 126, 3349 (2004).
http://dx.doi.org/10.1021/ja0377605
17.
M. Tie and A.-A. Dhirani, Phys. Rev. B 91, 155131 (2015).
http://dx.doi.org/10.1103/PhysRevB.91.155131
18.
D. L. Klein, R. Roth, A. K. L. Lim, A. P. Alivisatos, and P. L. McEuen, Nature 389, 699 (1997).
http://dx.doi.org/10.1038/39535
19.
D. C. Ralph, C. T. Black, and M. Tinkham, Phys. Rev. Lett. 78, 4087 (1997).
http://dx.doi.org/10.1103/PhysRevLett.78.4087
20.
Y. Suganuma, P.-E. Trudeau, and A.-A. Dhirani, Nanotechnology 16, 1196 (2005).
http://dx.doi.org/10.1088/0957-4484/16/8/037
21.
M. Li, W. Han, X. Jiang, J. Jeong, M. G. Samant, and S. S. P. Parkin, Nano Lett. 13, 4675 (2013).
http://dx.doi.org/10.1021/nl402088f
22.
R. Scherwitzl, P. Zubko, I. G. Lezama, S. Ono, A. F. Morpurgo, G. Catalan, and J.-M. Triscone, Adv. Mater. 22, 5517 (2010).
http://dx.doi.org/10.1002/adma.201003241
23.
P. Syers, D. Kim, M. S. Fuhrer, and J. Paglione, Phys. Rev. Lett. 114, 096601 (2015).
http://dx.doi.org/10.1103/PhysRevLett.114.096601
24.
J. T. Ye, Y. J. Zhang, R. Akashi, M. S. Bahramy, R. Arita, and Y. Iwasa, Science 338, 1193 (2012).
http://dx.doi.org/10.1126/science.1228006
25.
F. Wang, P. Stepanov, M. Gray, C. N. Lau, M. E. Itkis, and R. C. Haddon, Nano Lett. 15, 5284 (2015).
http://dx.doi.org/10.1021/acs.nanolett.5b01610
26.
H. Nakayama, J. Ye, T. Ohtani, Y. Fujikawa, K. Ando, Y. Iwasa, and E. Saitoh, Appl. Phys. Express 5, 023002 (2012).
http://dx.doi.org/10.1143/APEX.5.023002
27.
A. T. Bollinger, G. Dubuis, J. Yoon, D. Pavuna, J. Misewich, and I. Bozovic, Nature 472, 458 (2011).
http://dx.doi.org/10.1038/nature09998
28.
X. Leng, J. Garcia-Barriocanal, S. Bose, Y. Lee, and A. M. Goldman, Phys. Rev. Lett. 107, 027001 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.027001
29.
D. Daghero, F. Paolucci, A. Sola, M. Tortello, G. A. Ummarino, M. Agosto, R. S. Gonnelli, J. R. Nair, and C. Gerbaldi, Phys. Rev. Lett. 108, 066807 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.066807
30.
H. Yuan, H. Shimotani, A. Tsukazaki, A. Ohtomo, M. Kawasaki, and Y. Iwasa, Adv. Funct. Mater. 19, 1046 (2009).
http://dx.doi.org/10.1002/adfm.200801633
31.
K. Ueno, S. Nakamura, H. Shimotani, H. T. Yuan, N. Kimura, T. Nojima, H. Aoki, Y. Iwasa, and M. Kawasaki, Nat. Nanotechnol. 6, 408 (2011).
http://dx.doi.org/10.1038/nnano.2011.78
32.
K. Shibuya, T. Ohnishi, T. Sato, and M. Lippmaa, J. Appl. Phys. 102, 083713 (2007).
http://dx.doi.org/10.1063/1.2801383
33.
H. T. Yi, B. Gao, W. Xie, S.-W. Cheong, and V. Podzorov, Sci. Rep. 4, 6604 (2014).
http://dx.doi.org/10.1038/srep06604
34.
M. Brust, D. Bethell, C. J. Kiely, and D. J. Schiffrin, Langmuir 14, 5425 (1998).
http://dx.doi.org/10.1021/la980557g
35.
N. Fishelson, I. Shkrob, O. L. J. Gun, and A. D. Modestov, Langmuir 17, 403 (2001).
http://dx.doi.org/10.1021/la000830q
36.
H. Yuan, H. Shimotani, J. Ye, S. Yoon, H. Aliah, A. Tsukazaki, M. Kawasaki, and Y. Iwasa, J. Am. Chem. Soc. 132, 18402 (2010).
http://dx.doi.org/10.1021/ja108912x
37.
P. Joanis, M. Tie, and A.-A. Dhirani, Langmuir 29, 1264 (2013).
http://dx.doi.org/10.1021/la304386j
38.
Electroanalytical Methods, edited by F. Scholz (Springer, 2010).
39.
T. A. Petach, M. Lee, R. C. Davis, A. Mehta, and D. Goldhaber-Gordon, Phys. Rev. B 90, 081108 (2014).
http://dx.doi.org/10.1103/PhysRevB.90.081108
40.
H. Ji, J. Wei, and D. Natelson, Nano Lett. 12, 2988 (2012).
http://dx.doi.org/10.1021/nl300741h
41.
A. L. Efros and B. I. Shklovskii, J. Phys. C: Solid State Phys. 8, L49 (1975).
http://dx.doi.org/10.1088/0022-3719/8/4/003
42.
D. Yu, C. Wang, B. L. Wehrenberg, and P. Guyot-Sionnest, Phys. Rev. Lett. 92, 216802 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.216802
43.
J. L. Dunford, Y. Suganuma, and A.-A. Dhirani, Phys. Rev. B 72, 075441 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.075441
44.
H. Liu, A. Pourret, and P. Guyot-Sionnest, ACS Nano 4, 5211 (2010).
http://dx.doi.org/10.1021/nn101376u
45.
R. C. Dynes and J. P. Garno, Phys. Rev. Lett. 46, 137 (1981).
http://dx.doi.org/10.1103/PhysRevLett.46.137
46.
B. L. Altshuler and A. G. Aronov, Solid State Commun. 30, 115 (1979).
http://dx.doi.org/10.1016/0038-1098(79)90967-0
47.
R. C. Dynes and P. A. Lee, Science 223, 355 (1984).
http://dx.doi.org/10.1126/science.223.4634.355
48.
A. Y. Matsuura, H. Watanabe, C. Kim, S. Doniach, Z.-X. Shen, T. Thio, and J. W. Bennett, Phys. Rev. B 58, 3690 (1998).
http://dx.doi.org/10.1103/PhysRevB.58.3690
49.
S.-K. Mo, J. D. Denlinger, H.-D. Kim, J.-H. Park, J. W. Allen, A. Sekiyama, A. Yamasaki, K. Kadono, S. Suga, Y. Saitoh, T. Muro, P. Metcalf, G. Keller, K. Held, V. Eyert, V. I. Anisimov, and D. Vollhardt, Phys. Rev. Lett. 90, 186403 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.186403
50.
I. H. Inoue, I. Hase, Y. Aiura, A. Fujimori, Y. Haruyama, T. Maruyama, and Y. Nishihara, Phys. Rev. Lett. 74, 2539 (1995).
http://dx.doi.org/10.1103/PhysRevLett.74.2539
51.
M. J. Rozenberg, G. Kotliar, and H. Kajueter, Phys. Rev. Lett. 75, 105 (1995).
http://dx.doi.org/10.1103/PhysRevLett.75.105
52.
A. Georges and G. Kotliar, Phys. Rev. B 45, 6479 (1992).
http://dx.doi.org/10.1103/PhysRevB.45.6479
53.
J. Merino, M. Dumm, N. Drichko, M. Dressel, and R. H. McKenzie, Phys. Rev. Lett. 100, 086404 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.086404
http://aip.metastore.ingenta.com/content/aip/journal/jcp/145/10/10.1063/1.4962342
Loading
/content/aip/journal/jcp/145/10/10.1063/1.4962342
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/145/10/10.1063/1.4962342
2016-09-12
2016-09-29

Abstract

Strong electron-electron interactions experienced by electrons as they delocalize are widely believed to play a key role in a range of remarkable phenomena such as high Tc superconductivity, colossal magnetoresistance, and others. Strongly correlated electrons are often described by the Hubbard model, which is the simplest description of a correlated system and captures important gross features of phase diagrams of strongly correlated materials. However, open challenges in this field include experimentally mapping correlated electron phenomena beyond those captured by the Hubbard model, and extending the model accordingly. Here we use electrolyte gating to study a metal-insulator transition (MIT) in a new class of strongly correlated material, namely, nanostructured materials, using 1,4-butanedithiol-linked Au nanoparticle films (NPFs) as an example. Electrolyte gating provides a means for tuning the chemical potential of the materials over a wide range, without significantly modifying film morphology. On the insulating side of the transition, we observe Efros-Shklovskii variable range hopping and a soft Coulomb gap, evidencing the importance of Coulomb barriers. On the metallic side of the transition, we observe signatures of strong disorder mediated electron-electron correlations. Gating films near MIT also reveal a zero-bias conductance peak, which we attribute to a resonance at the Fermi level predicted by the Hubbard and Anderson impurity models when electrons delocalize and experience strong Coulomb electron-electron interactions. This study shows that by enabling large changes in carrier density, electrolyte gating of Au NPFs is a powerful means for tuning through the Hubbard MIT in NPFs. By revealing the range of behaviours that strongly correlated electrons can exhibit, this platform can guide the development of an improved understanding of correlated materials.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/145/10/1.4962342.html;jsessionid=14J9n95BtkObNkwu0jxhC4Ck.x-aip-live-02?itemId=/content/aip/journal/jcp/145/10/10.1063/1.4962342&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/145/10/10.1063/1.4962342&pageURL=http://scitation.aip.org/content/aip/journal/jcp/145/10/10.1063/1.4962342'
Right1,Right2,Right3,