Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/145/10/10.1063/1.4962354
1.
W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
http://dx.doi.org/10.1103/PhysRev.140.A1133
2.
P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
http://dx.doi.org/10.1103/PhysRev.136.B864
3.
R. J. Bartlett and M. Musiał, Rev. Mod. Phys. 79, 291 (2007).
http://dx.doi.org/10.1103/RevModPhys.79.291
4.
R. J. Bartlett, Mol. Phys. 108, 3299 (2010).
http://dx.doi.org/10.1080/00268976.2010.532818
5.
A. Görling and M. Levy, Phys. Rev. A 50, 196 (1994).
http://dx.doi.org/10.1103/PhysRevA.50.196
6.
R. J. Bartlett, I. Grabowski, S. Hirata, and S. Ivanov, J. Chem. Phys. 122, 34104 (2005).
http://dx.doi.org/10.1063/1.1809605
7.
S. Hirata, S. Ivanov, I. Grabowski, R. J. Bartlett, K. Burke, and J. D. Talman, J. Chem. Phys. 115, 1635 (2001).
http://dx.doi.org/10.1063/1.1381013
8.
S. Ivanov, S. Hirata, I. Grabowski, and R. J. Bartlett, J. Chem. Phys. 118, 461 (2003).
http://dx.doi.org/10.1063/1.1522570
9.
D. Bokhan and R. J. Bartlett, Chem. Phys. Lett. 427, 466 (2006).
http://dx.doi.org/10.1016/j.cplett.2006.07.020
10.
R. J. Bartlett, in Methods of Electronic Structure Theory, edited by D. R. Yarkony (World Scientific, Singapore, 1995).
11.
R. J. Bartlett, V. F. Lotrich, and I. V Schweigert, J. Chem. Phys. 123, 62205 (2005).
http://dx.doi.org/10.1063/1.1904585
12.
V. F. Lotrich, R. J. Bartlett, and I. Grabowski, Chem. Phys. Lett. 405, 43 (2005).
http://dx.doi.org/10.1016/j.cplett.2005.01.066
13.
S. Grimme, J. Chem. Phys. 124, 034108 (2006).
http://dx.doi.org/10.1063/1.2148954
14.
L. Goerigk and S. Grimme, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 4, 576 (2014).
http://dx.doi.org/10.1002/wcms.1193
15.
L. Goerigk and S. Grimme, J. Chem. Theory Comput. 7, 291 (2011).
http://dx.doi.org/10.1021/ct100466k
16.
S. Grimme and F. Neese, J. Chem. Phys. 127, 154116 (2007).
http://dx.doi.org/10.1063/1.2772854
17.
W. Kohn, A. D. Becke, and R. G. Parr, J. Phys. Chem. 100, 12974 (1996).
http://dx.doi.org/10.1021/jp960669l
18.
A. D. Becke, J. Chem. Phys. 140, 18A301 (2014).
http://dx.doi.org/10.1063/1.4869598
19.
D. P. Chong, O. V. Gritsenko, and E. J. Baerends, J. Chem. Phys. 116, 1760 (2002).
http://dx.doi.org/10.1063/1.1430255
20.
S. Hamel, P. Duffy, M. E. Casida, and D. R. Salahub, J. Electron Spectrosc. Relat. Phenom. 123, 345 (2002).
http://dx.doi.org/10.1016/S0368-2048(02)00032-4
21.
R. Van Meer, O. V. Gritsenko, and E. J. Baerends, J. Chem. Theory Comput. 10, 4432 (2014).
http://dx.doi.org/10.1021/ct500727c
22.
R. J. Bartlett, Chem. Phys. Lett. 484, 1 (2009).
http://dx.doi.org/10.1016/j.cplett.2009.10.053
23.
P. Verma and R. J. Bartlett, J. Chem. Phys. 137, 134102 (2012).
http://dx.doi.org/10.1063/1.4755818
24.
P. Verma and R. J. Bartlett, J. Chem. Phys. 140, 18A534 (2014).
http://dx.doi.org/10.1063/1.4871409
25.
O. V. Gritsenko, P. R. T. Schipper, and E. J. Baerends, Chem. Phys. Lett. 302, 199 (1999).
http://dx.doi.org/10.1016/S0009-2614(99)00128-1
26.
E. J. Baerends and O. V. Gritsenko, J. Chem. Phys. 123, 062202 (2005).
http://dx.doi.org/10.1063/1.1904566
27.
O. Gritsenko, R. Van Leeuwen, E. Van Lenthe, and E. J. Baerends, Phys. Rev. A 51, 1944 (1995).
http://dx.doi.org/10.1103/PhysRevA.51.1944
28.
M. Caricato, G. W. Trucks, M. J. Frisch, and K. B. Wiberg, J. Chem. Theory Comput. 6, 370 (2010).
http://dx.doi.org/10.1021/ct9005129
29.
J. T. Ranasinghe, D. S. Margraf, Y. Jin, and R. J. Bartlett, “Does the ionization potential condition employed in QTP functionals mitigate the self-interaction error?” (unpublished).
30.
C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988).
http://dx.doi.org/10.1103/PhysRevB.37.785
31.
A. D. Becke, Phys. Rev. A 38, 3098 (1988).
http://dx.doi.org/10.1103/PhysRevA.38.3098
32.
P. Mori-Sanchez, Q. Wu, and W. Yang, J. Chem. Phys. 123, 062204 (2005).
http://dx.doi.org/10.1063/1.1904584
33.
F. Neese, T. Schwabe, S. Kossmann, B. Schirmer, and S. Grimme, J. Chem. Theory Comput. 5, 3060 (2009).
http://dx.doi.org/10.1021/ct9003299
34.
R. Peverati and M. Head-Gordon, J. Chem. Phys. 139, 024110 (2013).
http://dx.doi.org/10.1063/1.4812689
35.
M. Isegawa, F. Neese, and D. A. Pantazis, J. Chem. Theory Comput. 12, 2272 (2016).
http://dx.doi.org/10.1021/acs.jctc.6b00252
36.
A. Karton, A. Tarnopolsky, J. F. Lamère, G. C. Schatz, and J. M. L. Martin, J. Phys. Chem. A 112, 12868 (2008).
http://dx.doi.org/10.1021/jp801805p
37.
J. Harris, Phys. Rev. A 29, 1648 (1984).
http://dx.doi.org/10.1103/PhysRevA.29.1648
38.
K. Sharkas, J. Toulouse, and A. Savin, J. Chem. Phys. 134, 064113 (2011).
http://dx.doi.org/10.1063/1.3544215
39.
E. Fromager, J. Chem. Phys. 135, 244106 (2011).
http://dx.doi.org/10.1063/1.3671384
40.
J. Toulouse, K. Sharkas, E. Brémond, and C. Adamo, J. Chem. Phys. 135, 101102 (2011).
http://dx.doi.org/10.1063/1.3640019
41.
E. Brémond and C. Adamo, J. Chem. Phys. 135, 024106 (2011).
http://dx.doi.org/10.1063/1.3604569
42.
É. Brémond, J. C. Sancho-García, Á. J. Pérez-Jiménez, and C. Adamo, J. Chem. Phys. 141, 031101 (2014).
http://dx.doi.org/10.1063/1.4890314
43.
F. Neese, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2, 73 (2012).
http://dx.doi.org/10.1002/wcms.81
44.
F. Neese, F. Wennmohs, A. Hansen, and U. Becker, Chem. Phys. 356, 98 (2009).
http://dx.doi.org/10.1016/j.chemphys.2008.10.036
45.
J. Zheng, X. Xu, and D. G. Truhlar, Theor. Chem. Acc. 128, 295 (2011).
http://dx.doi.org/10.1007/s00214-010-0846-z
46.
P.-O. Widmark, P.-A. Malmqvist, and B. O. Roos, Theor. Chim. Acta 77, 291 (1990).
http://dx.doi.org/10.1007/BF01120130
47.
P.-O. Widmark, B. J. Persson, and B. O. Roos, Theor. Chim. Acta 79, 419 (1991).
http://dx.doi.org/10.1007/BF01112569
48.
J. F. Stanton, J. Gauss, S. A. Perera, A. Yau, J. D. Watts, M. Nooijen, N. Oliphant, P. G. Szalay, W. J. Lauderdale, S. R. Gwaltney, S. Beck, A. Balková, D. E. Bernholdt, K.-K. Baeck, P. Rozyczko, H. Sekino, C. Huber, J. Pittner, and R. J. Bartlett, “ACESII is a product of the quantum theory project,” University of Florida, Integral packages included are VMOL (J. Almölf and P. R. Taylor) VPROPS (P. R. Taylor) and ABACUS (T. Helgaker, H. J. Aa. Jensen, P. Jørgensen, J. Olsen, and P. R. Taylor).
49.
O. V. Gritsenko, Ł. M. Mentel, and E. J. Baerends, J. Chem. Phys. 144, 204114 (2016).
http://dx.doi.org/10.1063/1.4950877
50.
M. C. Kim, H. Park, S. Son, E. Sim, and K. Burke, J. Phys. Chem. Lett. 6, 3802 (2015).
http://dx.doi.org/10.1021/acs.jpclett.5b01724
51.
N. Oliphant and R. J. Bartlett, J. Chem. Phys. 100, 6550 (1994).
http://dx.doi.org/10.1063/1.467064
52.
P. Verma, A. Perera, and R. J. Bartlett, Chem. Phys. Lett. 524, 10 (2012).
http://dx.doi.org/10.1016/j.cplett.2011.12.017
53.
T. Körzdörfer and S. Kümmel, Phys. Rev. B 82, 155206 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.155206
54.
E. I. Izgorodina, M. L. Coote, and L. Radom, J. Phys. Chem. A 109, 7558 (2005).
http://dx.doi.org/10.1021/jp052021r
55.
R. Peverati and D. G. Truhlar, Philos. Trans. R. Soc., A 372, 20120476 (2014).
http://dx.doi.org/10.1098/rsta.2012.0476
56.
Y. Zhao, N. E. Schultz, and D. G. Truhlar, J. Chem. Theory Comput. 2, 364 (2006).
http://dx.doi.org/10.1021/ct0502763
57.
R. Huenerbein, B. Schirmer, J. Moellmann, and S. Grimme, Phys. Chem. Chem. Phys. 12, 6940 (2010).
http://dx.doi.org/10.1039/c003951a
58.
J. Zheng, Y. Zhao, and D. G. Truhlar, J. Chem. Theory Comput. 5, 808 (2009).
http://dx.doi.org/10.1021/ct800568m
59.
G. Sansone, B. Civalleri, D. Usvyat, J. Toulouse, K. Sharkas, and L. Maschio, J. Chem. Phys. 143, 102811 (2015).
http://dx.doi.org/10.1063/1.4922996
60.
J. Da Chai and M. Head-Gordon, J. Chem. Phys. 131, 174105 (2009).
http://dx.doi.org/10.1063/1.3244209
61.
S. M. O. Souvi, K. Sharkas, and J. Toulouse, J. Chem. Phys. 140, 084107 (2014).
http://dx.doi.org/10.1063/1.4865963
62.
Y. Zhao, B. J. Lynch, and D. G. Truhlar, J. Phys. Chem. A 108, 4786 (2004).
http://dx.doi.org/10.1021/jp049253v
63.
É. Brémond, M. Savarese, J. C. Sancho-García, Á. J. Pérez-Jiménez, and C. Adamo, J. Chem. Phys. 144, 124104 (2016).
http://dx.doi.org/10.1063/1.4944465
64.
S. Kozuch, D. Gruzman, and J. M. L. Martin, J. Phys. Chem. C 114, 20801 (2010).
http://dx.doi.org/10.1021/jp1070852
65.
S. Kossmann and F. Neese, J. Phys. Chem. A 114, 11768 (2010).
http://dx.doi.org/10.1021/jp105647c
66.
R. C. Lochan and M. Head-Gordon, J. Chem. Phys. 126, 164101 (2007).
http://dx.doi.org/10.1063/1.2718952
67.
B. Chan and L. Radom, J. Chem. Theory Comput. 7, 2852 (2011).
http://dx.doi.org/10.1021/ct200396x
68.
S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, J. Chem. Phys. 132, 154104 (2010).
http://dx.doi.org/10.1063/1.3382344
69.
O. A. Vydrov and T. Van Voorhis, J. Chem. Phys. 133, 244103 (2010).
http://dx.doi.org/10.1063/1.3521275
70.
V. Atalla, M. Yoon, F. Caruso, P. Rinke, and M. Scheffler, Phys. Rev. B: Condens. Matter Mater. Phys. 88, 165122 (2013).
http://dx.doi.org/10.1103/PhysRevB.88.165122
71.
T. Körzdörfer and N. Marom, Phys. Rev. B: Condens. Matter Mater. Phys. 86, 041110(R) (2012).
http://dx.doi.org/10.1103/physrevb.86.041110
72.
T. Körzdörfer, R. M. Parrish, N. Marom, J. S. Sears, C. D. Sherrill, and J.-L. Brédas, Phys. Rev. B 86, 205110 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.205110
73.
S. Refaely-Abramson, S. Sharifzadeh, N. Govind, J. Autschbach, J. B. Neaton, R. Baer, and L. Kronik, Phys. Rev. Lett. 109, 226405 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.226405
74.
K. Molawi, A. J. Cohen, and N. C. Handy, Int. J. Quantum Chem. 89, 86 (2002).
http://dx.doi.org/10.1002/qua.10299
75.
A. D. Becke, J. Chem. Phys. 119, 2972 (2003).
http://dx.doi.org/10.1063/1.1589733
http://aip.metastore.ingenta.com/content/aip/journal/jcp/145/10/10.1063/1.4962354
Loading
/content/aip/journal/jcp/145/10/10.1063/1.4962354
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/145/10/10.1063/1.4962354
2016-09-13
2016-09-28

Abstract

Double-hybrid density functional approximations (DH-DFAs) provide an accurate description of the electronic structure of molecules by semiempirically mixing density functional and wavefunction theory. In this paper, we investigate the properties of the potential used in such approximations. By using the optimized effective potential approach, the consistent Kohn-Sham (KS) potential for a double-hybrid functional (including the second-order perturbational contribution) can be generated. This potential is shown to provide an improved description of orbital energies as vertical ionization potentials (IPs), relative to the perturbation-free KS potential typically used. Based on this observation, we suggest that DH-DFAs should be constructed in such a way that the potential provides accurate orbital energies. As a proof of principle, the B2-PLYP functional is reparameterized to obtain the IP-optimized B2IP-PLYP functional, using a small set of vertical IPs and atomization energies as reference data. This functional is shown to outperform B2-PLYP in a wide range of benchmarks and is with the related B2GP-PLYP. In particular, it is shown to be the most reliable choice in electronically difficult and multireference cases.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/145/10/1.4962354.html;jsessionid=YXsTlS3MPoO-SB4_tycyDdw_.x-aip-live-03?itemId=/content/aip/journal/jcp/145/10/10.1063/1.4962354&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/145/10/10.1063/1.4962354&pageURL=http://scitation.aip.org/content/aip/journal/jcp/145/10/10.1063/1.4962354'
Right1,Right2,Right3,