Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/145/10/10.1063/1.4962365
1.
G. Filipcsei, I. Csetneki, A. Szilágyi, and M. Zrínyi, Adv. Polym. Sci. 206, 137 (2007).
http://dx.doi.org/10.1007/12_2006_104
2.
A. M. Menzel, Phys. Rep. 554, 1 (2015).
http://dx.doi.org/10.1016/j.physrep.2014.10.001
3.
M. Lopez-Lopez, J. D. Durán, L. Y. Iskakova, and A. Y. Zubarev, J. Nanofluids 5, 479 (2016).
http://dx.doi.org/10.1166/jon.2016.1233
4.
S. Odenbach, Arch. Appl. Mech. 86, 269 (2016).
http://dx.doi.org/10.1007/s00419-015-1092-6
5.
E. Jarkova, H. Pleiner, H.-W. Müller, and H. R. Brand, Phys. Rev. E 68, 041706 (2003).
http://dx.doi.org/10.1103/PhysRevE.68.041706
6.
M. Zrínyi, L. Barsi, and A. Büki, J. Chem. Phys. 104, 8750 (1996).
http://dx.doi.org/10.1063/1.471564
7.
G. V. Stepanov, S. S. Abramchuk, D. A. Grishin, L. V. Nikitin, E. Y. Kramarenko, and A. R. Khokhlov, Polymer 48, 488 (2007).
http://dx.doi.org/10.1016/j.polymer.2006.11.044
8.
X. Guan, X. Dong, and J. Ou, J. Magn. Magn. Mater. 320, 158 (2008).
http://dx.doi.org/10.1016/j.jmmm.2007.05.043
9.
H. Böse and R. Röder, J. Phys.: Conf. Ser. 149, 012090 (2009).
http://dx.doi.org/10.1088/1742-6596/149/1/012090
10.
X. Gong, G. Liao, and S. Xuan, Appl. Phys. Lett. 100, 211909 (2012).
http://dx.doi.org/10.1063/1.4722789
11.
B. A. Evans, B. L. Fiser, W. J. Prins, D. J. Rapp, A. R. Shields, D. R. Glass, and R. Superfine, J. Magn. Magn. Mater. 324, 501 (2012).
http://dx.doi.org/10.1016/j.jmmm.2011.08.045
12.
D. Y. Borin, G. V. Stepanov, and S. Odenbach, J. Phys.: Conf. Ser. 412, 012040 (2013).
http://dx.doi.org/10.1088/1742-6596/412/1/012040
13.
R. E. Rosensweig, Ferrohydrodynamics (Cambridge University Press, Cambridge, 1985).
14.
S. Odenbach, Colloids Surf., A 217, 171 (2003).
http://dx.doi.org/10.1016/S0927-7757(02)00573-3
15.
S. Odenbach, Magnetoviscous Effects in Ferrofluids (Springer, Berlin, Heidelberg, 2003).
16.
S. Odenbach, J. Phys.: Condens. Matter 16, R1135 (2004).
http://dx.doi.org/10.1088/0953-8984/16/32/R02
17.
B. Huke and M. Lücke, Rep. Prog. Phys. 67, 1731 (2004).
http://dx.doi.org/10.1088/0034-4885/67/10/R01
18.
P. Ilg, M. Kröger, and S. Hess, J. Magn. Magn. Mater. 289, 325 (2005).
http://dx.doi.org/10.1016/j.jmmm.2004.11.092
19.
C. Holm and J.-J. Weis, Curr. Opin. Colloid Interface Sci. 10, 133 (2005).
http://dx.doi.org/10.1016/j.cocis.2005.07.005
20.
S. H. L. Klapp, J. Phys.: Condens. Matter 17, R525 (2005).
http://dx.doi.org/10.1088/0953-8984/17/15/R02
21.
S. M. Cattes, S. H. L. Klapp, and M. Schoen, Phys. Rev. E 91, 052127 (2015).
http://dx.doi.org/10.1103/PhysRevE.91.052127
22.
S. D. Peroukidis and S. H. L. Klapp, Phys. Rev. E 92, 010501 (2015).
http://dx.doi.org/10.1103/PhysRevE.92.010501
23.
S. H. L. Klapp, Curr. Opin. Colloid Interface Sci. 21, 76 (2016).
http://dx.doi.org/10.1016/j.cocis.2016.01.004
24.
K. Zimmermann, V. A. Naletova, I. Zeidis, V. Böhm, and E. Kolev, J. Phys.: Condens. Matter 18, S2973 (2006).
http://dx.doi.org/10.1088/0953-8984/18/38/S30
25.
H.-X. Deng, X.-L. Gong, and L.-H. Wang, Smart Mater. Struct. 15, N111 (2006).
http://dx.doi.org/10.1088/0964-1726/15/5/N02
26.
T. L. Sun, X. L. Gong, W. Q. Jiang, J. F. Li, Z. B. Xu, and W. Li, Polym. Test. 27, 520 (2008).
http://dx.doi.org/10.1016/j.polymertesting.2008.02.008
27.
D. Szabó, G. Szeghy, and M. Zrínyi, Macromolecules 31, 6541 (1998).
http://dx.doi.org/10.1021/ma980284w
28.
R. V. Ramanujan and L. L. Lao, Smart Mater. Struct. 15, 952 (2006).
http://dx.doi.org/10.1088/0964-1726/15/4/008
29.
M. Babincová, D. Leszczynska, P. Sourivong, P. Čičmanec, and P. Babinec, J. Magn. Magn. Mater. 225, 109 (2001).
http://dx.doi.org/10.1016/S0304-8853(00)01237-3
30.
L. L. Lao and R. V. Ramanujan, J. Mater. Sci.: Mater. Med. 15, 1061 (2004).
http://dx.doi.org/10.1023/B:JMSM.0000046386.78633.e5
31.
N. Frickel, R. Messing, and A. M. Schmidt, J. Mater. Chem. 21, 8466 (2011).
http://dx.doi.org/10.1039/c0jm03816d
32.
E. Allahyarov, A. M. Menzel, L. Zhu, and H. Löwen, Smart Mater. Struct. 23, 115004 (2014).
http://dx.doi.org/10.1088/0964-1726/23/11/115004
33.
M. Kästner, S. Müller, J. Goldmann, C. Spieler, J. Brummund, and V. Ulbricht, Int. J. Numer. Methods Eng. 93, 1403 (2013).
http://dx.doi.org/10.1002/nme.4435
34.
P. Cremer, H. Löwen, and A. M. Menzel, Appl. Phys. Lett. 107, 171903 (2015).
http://dx.doi.org/10.1063/1.4934698
35.
S. Huang, G. Pessot, P. Cremer, R. Weeber, C. Holm, J. Nowak, S. Odenbach, A. M. Menzel, and G. K. Auernhammer, Soft Matter 12, 228 (2016).
http://dx.doi.org/10.1039/C5SM01814E
36.
R. Weeber, S. Kantorovich, and C. Holm, J. Chem. Phys. 143, 154901 (2015).
http://dx.doi.org/10.1063/1.4932371
37.
J. L. Mietta, P. I. Tamborenea, and R. Martin Negri, Soft Matter 12, 6430 (2016).
http://dx.doi.org/10.1039/C6SM01173J
38.
Z. Varga, G. Filipcsei, and M. Zrínyi, Polymer 47, 227 (2006).
http://dx.doi.org/10.1016/j.polymer.2005.10.139
39.
H. Haider, C. Yang, W. J. Zheng, J. Yang, M. X. Wang, M. Zrínyi, S. Sang, Y. Osada, Z. Suo, Q. Zhang et al., Soft Matter 11, 8253 (2015).
http://dx.doi.org/10.1039/C5SM01487E
40.
E. I. Wisotzki, M. Hennes, C. Schuldt, F. Engert, W. Knolle, U. Decker, J. A. Kas, M. Zink, and S. G. Mayr, J. Mater. Chem. B 2, 4297 (2014).
http://dx.doi.org/10.1039/C4TB00429A
41.
R. Weeber, S. Kantorovich, and C. Holm, Soft Matter 8, 9923 (2012).
http://dx.doi.org/10.1039/c2sm26097b
42.
L. Roeder, P. Bender, M. Kundt, A. Tschöpe, and A. M. Schmidt, Phys. Chem. Chem. Phys. 17, 1290 (2015).
http://dx.doi.org/10.1039/C4CP04493B
43.
R. Messing, N. Frickel, L. Belkoura, R. Strey, H. Rahn, S. Odenbach, and A. M. Schmidt, Macromolecules 44, 2990 (2011).
http://dx.doi.org/10.1021/ma102708b
44.
T. Gundermann and S. Odenbach, Smart Mater. Struct. 23, 105013 (2014).
http://dx.doi.org/10.1088/0964-1726/23/10/105013
45.
J. Landers, L. Roeder, S. Salamon, A. M. Schmidt, and H. Wende, J. Phys. Chem. C 119, 20642 (2015).
http://dx.doi.org/10.1021/acs/jpcc/5b03697
46.
C. Garcia, Y. Zhang, F. DiSalvo, and U. Wiesner, Angew. Chem., Int. Ed. 42, 1526 (2003).
http://dx.doi.org/10.1002/anie.200250618
47.
H. R. Brand, A. Fink, and H. Pleiner, Eur. Phys. J. E 38, 65 (2015).
http://dx.doi.org/10.1140/epje/i2015-15065-8
48.
H. R. Brand and H. Pleiner, Eur. Phys. J. E 37, 122 (2014).
http://dx.doi.org/10.1140/epje/i2014-14122-2
49.
A. Y. Zubarev, Soft Matter 8, 3174 (2012).
http://dx.doi.org/10.1039/c2sm06961j
50.
S. Bohlius, H. R. Brand, and H. Pleiner, Phys. Rev. E 70, 061411 (2004).
http://dx.doi.org/10.1103/PhysRevE.70.061411
51.
D. Ivaneyko, V. Toshchevikov, M. Saphiannikova, and G. Heinrich, Condens. Matter Phys. 15, 33601 (2012).
http://dx.doi.org/10.5488/CMP.15.33601
52.
M. R. Dudek, B. Grabiec, and K. W. Wojciechowski, Rev. Adv. Mater. Sci. 14, 167 (2007).
53.
D. S. Wood and P. J. Camp, Phys. Rev. E 83, 011402 (2011).
http://dx.doi.org/10.1103/PhysRevE.83.011402
54.
M. A. Annunziata, A. M. Menzel, and H. Löwen, J. Chem. Phys. 138, 204906 (2013).
http://dx.doi.org/10.1063/1.4807003
55.
G. Pessot, P. Cremer, D. Y. Borin, S. Odenbach, H. Löwen, and A. M. Menzel, J. Chem. Phys. 141, 124904 (2014).
http://dx.doi.org/10.1063/1.4896147
56.
M. Tarama, P. Cremer, D. Y. Borin, S. Odenbach, H. Löwen, and A. M. Menzel, Phys. Rev. E 90, 042311 (2014).
http://dx.doi.org/10.1103/PhysRevE.90.042311
57.
P. A. Sánchez, J. J. Cerdà, T. Sintes, and C. Holm, J. Chem. Phys. 139, 044904 (2013).
http://dx.doi.org/10.1063/1.4815915
58.
J. J. Cerdà, P. A. Sánchez, C. Holm, and T. Sintes, Soft Matter 9, 7185 (2013).
http://dx.doi.org/10.1039/c3sm50278c
59.
D. Ivaneyko, V. Toshchevikov, and M. Saphiannikova, Soft Matter 11, 7627 (2015).
http://dx.doi.org/10.1039/C5SM01761K
60.
C. Spieler, M. Kästner, J. Goldmann, J. Brummund, and V. Ulbricht, Acta Mech. 224, 2453 (2013).
http://dx.doi.org/10.1007/s00707-013-0948-5
61.
Y. L. Raikher, O. V. Stolbov, and G. V. Stepanov, J. Phys. D: Appl. Phys. 41, 152002 (2008).
http://dx.doi.org/10.1088/0022-3727/41/15/152002
62.
O. V. Stolbov, Y. L. Raikher, and M. Balasoiu, Soft Matter 7, 8484 (2011).
http://dx.doi.org/10.1039/c1sm05714f
63.
Y. Han, W. Hong, and L. E. Faidley, Int. J. Solids Struct. 50, 2281 (2013).
http://dx.doi.org/10.1016/j.ijsolstr.2013.03.030
64.
R. Weeber, S. Kantorovich, and C. Holm, J. Magn. Magn. Mater. 383, 262 (2015).
http://dx.doi.org/10.1016/j.jmmm.2015.01.018
65.
A. M. Menzel, J. Chem. Phys. 141, 194907 (2014).
http://dx.doi.org/10.1063/1.4901275
66.
G. Pessot, R. Weeber, C. Holm, H. Löwen, and A. M. Menzel, J. Phys.: Condens. Matter 27, 325105 (2015).
http://dx.doi.org/10.1088/0953-8984/27/32/325105
67.
I. A. Belyaeva, E. Kramarenko, G. V. Stepanov, V. Sorokin, D. Stadler, and M. Shamonin, Soft Matter 12, 2901 (2016).
http://dx.doi.org/10.1039/C5SM02690C
68.
A. M. Biller, O. V. Stolbov, and Y. L. Raikher, J. Appl. Phys. 116, 114904 (2014).
http://dx.doi.org/10.1063/1.4895980
69.
E. Allahyarov, H. Löwen, and L. Zhu, Phys. Chem. Chem. Phys. 17, 32479 (2015).
http://dx.doi.org/10.1039/C5CP05522A
70.
J. D. Weeks, D. Chandler, and H. C. Andersen, J. Chem. Phys. 54, 5237 (1971).
http://dx.doi.org/10.1063/1.1674820
71.
W. W. Hager and Z. Hongchao, SIAM J. Optim. 16, 170 (2005).
http://dx.doi.org/10.1137/030601880
72.
H. Shintani and H. Tanaka, Nat. Mater. 7, 870 (2008).
http://dx.doi.org/10.1038/nmat2293
73.
L. Rovigatti, W. Kob, and F. Sciortino, J. Chem. Phys. 135, 104502 (2011).
http://dx.doi.org/10.1063/1.3626869
74.
E. Lerner, E. DeGiuli, G. Düring, and M. Wyart, Soft Matter 10, 5085 (2014).
http://dx.doi.org/10.1039/c4sm00311j
75.
D. Frenkel and B. Smit, Understanding Molecular Simulation, 2nd ed. (Academic Press, San Diego, 2002).
76.
D. Frenkel and A. J. C. Ladd, Phys. Rev. Lett. 59, 1169 (1987).
http://dx.doi.org/10.1103/PhysRevLett.59.1169
77.
D. Squire, A. Holt, and W. Hoover, Physica 42, 388 (1969).
http://dx.doi.org/10.1016/0031-8914(69)90031-7
78.
M. Born, J. Chem. Phys. 7, 591 (1939).
http://dx.doi.org/10.1063/1.1750497
79.
I. Fuereder and P. Ilg, J. Chem. Phys. 142, 144505 (2015).
http://dx.doi.org/10.1063/1.4917042
80.
M. V. Jarić and U. Mohanty, Phys. Rev. B 37, 4441 (1988).
http://dx.doi.org/10.1103/PhysRevB.37.4441
81.
D. Collin, G. K. Auernhammer, O. Gavat, P. Martinoty, and H. R. Brand, Macromol. Rapid Commun. 24, 737 (2003).
http://dx.doi.org/10.1002/marc.200350016
82.
L. D. Landau and E. M. Lifshitz, Elasticity Theory (Pergamon Press, 1975).
83.
E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney et al., LAPACK Users’ Guide, 3rd ed. (Society for Industrial and Applied Mathematics, Philadelphia, 1999).
84.
A. Ivlev, H. Löwen, G. Morfill, and C. P. Royall, Complex Plasmas and Colloidal Dispersions (World Scientific, 2012).
85.
J. J. Zanna, P. Stein, J. D. Marty, M. Mauzac, and P. Martinoty, Macromolecules 35, 5459 (2002).
http://dx.doi.org/10.1021/ma020083z
86.
M. Sedlacik, M. Mrlik, V. Babayan, and V. Pavlinek, Compos. Struct. 135, 199 (2016).
http://dx.doi.org/10.1016/j.compstruct.2015.09.037
87.
E. Roeben, L. Roeder, S. Teusch, M. Effertz, U. K. Deiters, and A. M. Schmidt, Colloid Polym. Sci. 292, 2013 (2014).
http://dx.doi.org/10.1007/s00396-014-3289-6
88.
N. Hohlbein, A. Shaaban, and A. M. Schmidt, Polymer 69, 301 (2015).
http://dx.doi.org/10.1016/j.polymer.2015.04.024
89.
F. Mainardi and G. Spada, Eur. Phys. J.: Spec. Top. 193, 133 (2011).
http://dx.doi.org/10.1140/epjst/e2011-01387-1
90.
L. B. Eldred, W. P. Baker, and A. N. Palazotto, AIAA J. 33, 547 (1995).
http://dx.doi.org/10.2514/3.12471
91.
N. W. Ashcroft and N. D. Mermin, Solid State Physics (Saunders, 1976).
92.
G. Schubert and P. Harrison, Smart Mater. Struct. 25, 015015 (2016).
http://dx.doi.org/10.1088/0964-1726/25/1/015015
93.
M. Roth, M. D’Acunzi, D. Vollmer, and G. K. Auernhammer, J. Chem. Phys. 132, 124702 (2010).
http://dx.doi.org/10.1063/1.3358331
94.
A. M. Menzel, Phys. Rev. E 94, 023003 (2016).
http://dx.doi.org/10.1103/PhysRevE.94.023003
95.
C. Passow, B. ten Hagen, H. Löwen, and J. Wagner, J. Chem. Phys. 143, 044903 (2015).
http://dx.doi.org/10.1063/1.4926931
96.
S. Günther and S. Odenbach, Transp. Porous Media 112, 105 (2016).
http://dx.doi.org/10.1007/s11242-016-0634-x
http://aip.metastore.ingenta.com/content/aip/journal/jcp/145/10/10.1063/1.4962365
Loading
/content/aip/journal/jcp/145/10/10.1063/1.4962365
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/145/10/10.1063/1.4962365
2016-09-14
2016-09-27

Abstract

In the perspective of developing smart hybrid materials with customized features, ferrogels and magnetorheological elastomers allow a synergy of elasticity and magnetism. The interplay between elastic and magnetic properties gives rise to a unique reversible control of the material behavior by applying an external magnetic field. Albeit few works have been performed on the time-dependent properties so far, understanding the dynamic behavior is the key to model many practical situations, e.g., applications as vibration absorbers. Here we present a way to calculate the frequency-dependent elastic moduli based on the decomposition of the linear response to an external stress in normal modes. We use a minimal three-dimensional dipole-spring model to theoretically describe the magnetic and elastic interactions on the mesoscopic level. Specifically, the magnetic particles carry permanent magnetic dipole moments and are spatially arranged in a prescribed way, before they are linked by elastic springs. An external magnetic field aligns the magnetic moments. On the one hand, we study regular lattice-like particle arrangements to compare with previous results in the literature. On the other hand, we calculate the dynamic elastic moduli for irregular, more realistic particle distributions. Our approach measures the tunability of the linear dynamic response as a function of the particle arrangement, the system orientation with respect to the external magnetic field, as well as the magnitude of the magnetic interaction between the particles. The strength of the present approach is that it explicitly connects the relaxational modes of the system with the rheological properties as well as with the internal rearrangement of the particles in the sample, providing new insight into the dynamics of these remarkable materials.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/145/10/1.4962365.html;jsessionid=Ecl8cFc74IgWKhICWbfJWOlV.x-aip-live-03?itemId=/content/aip/journal/jcp/145/10/10.1063/1.4962365&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/145/10/10.1063/1.4962365&pageURL=http://scitation.aip.org/content/aip/journal/jcp/145/10/10.1063/1.4962365'
Right1,Right2,Right3,