Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/145/10/10.1063/1.4962366
1.
F. Oosawa and S. Asakura, Thermodynamics of the Polymerization of Protein (Academic Press, Waltham MA, 1975).
2.
B. Alberts, Molecular Biology of the Cell (Taylor & Francis, New York, 2002).
3.
F. Chiti and C. M. Dobson, “Protein misfolding, functional amyloid, and human disease,” Annu. Rev. Biochem. 75, 333 (2006).
http://dx.doi.org/10.1146/annurev.biochem.75.101304.123901
4.
D. Chandler, “Interfaces and the driving force of hydrophobic assembly,” Nature 437, 640 (2005).
http://dx.doi.org/10.1038/nature04162
5.
A. Irbáck, S. A. Jónsson, N. Linnemann, B. Linse, and S. Wallin, “Aggregate geometry in amyloid fibril nucleation,” Phys. Rev. Lett. 110, 058101 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.058101
6.
A. Wegner, “Spontaneous fragmentation of actin filaments in physiological conditions,” Nature 296, 266 (1982).
http://dx.doi.org/10.1038/296266a0
7.
A. Wegner and P. Savko, “Fragmentation of actin filaments,” Biochemistry 21, 19091913 (1982).
http://dx.doi.org/10.1021/bi00537a032
8.
T. D. Pollard, “Rate constants for the reactions of ATP-and ADP-actin with ends of actin filaments,” J. Cell Biol. 193, 27472754 (1986).
http://dx.doi.org/10.1083/jcb.103.6.2747
9.
H. P. Erickson, “Co-operativity in protein-protein association,” J. Mol. Biol. 296, 465474 (1989).
http://dx.doi.org/10.1016/0022-2836(89)90494-4
10.
H. J. Kinosian, L. A. Selden, J. E. Estes, and L. C. Gershman, “Actin filament annealing in the presence of ATP and phalloidin,” Biochemistry 32, 1235312357 (1993).
http://dx.doi.org/10.1021/bi00097a011
11.
D. Sept, J. Xu, T. D. Pollard, and J. A. McCammon, “Annealing accounts for the length of actin filaments formed by spontaneous polymerization,” Biophys. J. 77, 29112919 (1999).
http://dx.doi.org/10.1016/S0006-3495(99)77124-9
12.
D. Vavylonis, Q. Yang, and B. O’Shaughnessy, “Actin polymerization kinetics, cap structure, and fluctuations,” Proc. Natl. Acad. Sci. U. S. A. 102, 85438548 (2005).
http://dx.doi.org/10.1073/pnas.0501435102
13.
E. B. Stukalin and A. B. Kolomeisky, “ATP hydrolysis stimulates large length fluctuations in single actin filaments,” Biophys. J. 90, 26732685 (2006).
http://dx.doi.org/10.1529/biophysj.105.074211
14.
E. Andrianantoandro, L. Blanchoin, D. Sept, J. A. McCammon, and T. D. Pollard, “Kinetic mechanism of end-to-end annealing of actin filaments,” J. Mol. Biol. 312, 721730 (2001).
http://dx.doi.org/10.1006/jmbi.2001.5005
15.
I. Fujiwara, S. Takahashi, H. Tadakuma, T. Funatsu, and S. Ishiwata, “Microscopic analysis of polymerization dynamics with individual actin filaments,” Nat. Cell Biol. 4, 666673 (2002).
http://dx.doi.org/10.1038/ncb841
16.
J. R. Kuhn and T. D. Pollard, “Real-time measurements of actin filament polymerization by total internal reflection fluorescence microscopy,” Biophys. J. 88, 13871402 (2005).
http://dx.doi.org/10.1529/biophysj.104.047399
17.
J. Fass, C. Pak, J. Bamburg, and A. Mogilner, “Stochastic simulation of actin dynamics reveals the role of annealing and fragmentation,” J. Theor. Biol. 252, 173183 (2008).
http://dx.doi.org/10.1016/j.jtbi.2008.01.001
18.
T. P. J. Knowles, C. A. Waudby, G. L. Devlin, S. I. A. Cohen, A. Aguzzi, M. Vendruscolo, E. M. Terentjev, M. E. Welland, and C. M. Dobson, “An analytical solution to the kinetics of breakable filament assembly,” Science 326, 15331537 (2009).
http://dx.doi.org/10.1126/science.1178250
19.
J. Adamcik, J.-M. Jung, J. Flakowski, P. De Los Rios, G. Dietler, and R. Mezzenga, “Understanding amyloid aggregation by statistical analysis of atomic force microscopy images,” Nat. Nanotechnol. 5, 423428 (2010).
http://dx.doi.org/10.1038/nnano.2010.59
20.
J. Käs, H. Strey, J. X. Tang, D. Finger, R. Ezzell, E. Sackmann, and P. A. Janmey, “F-actin, a model polymer for semiflexible chains in dilute, semi-dilute, and liquid crystalline solutions,” Biophys. J. 70, 609625 (1996).
http://dx.doi.org/10.1016/S0006-3495(96)79630-3
21.
T. D. Pollard and J. A. Cooper, “Actin and actin-binding proteins. A critical evaluation of mechanisms and functions,” Annu. Rev. Biochem. 55, 9871035 (1986).
http://dx.doi.org/10.1146/annurev.bi.55.070186.005011
22.
N. Carulla et al., “Molecular recycling within amyloid fibrils,” Nature 436, 554558 (2005).
http://dx.doi.org/10.1038/nature03986
23.
M. Groenning, R. I. Campos, D. Hirschberg, P. Hammarstrom, and B. Vestergaard, “Considerably unfolded transthyretin monomers preceed and exchange with dynamically structured amyloid protofibrils,” Sci. Rep. 5, 11443 (2015).
http://dx.doi.org/10.1038/srep11443
24.
C. F. Lee, “Thermal breakage of a discrete one-dimensional string,” Phys. Rev. E 80, 031134 (2009).
http://dx.doi.org/10.1103/PhysRevE.80.031134
25.
F. Gittes, B. Mickey, J. Nettleton, and J. Howard, “Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape,” J. Cell Biol. 120, 923934 (1993).
http://dx.doi.org/10.1083/jcb.120.4.923
26.
T. P. J. Knowles, J. F. Smith, A. Craig, C. M. Dobson, and M. E. Welland, “Spatial persistence of angular correlations in amyloid fibrils,” Phys. Rev. Lett. 96, 238301 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.238301
27.
T. P. J. Knowles, A. W. Fitzpatrick, S. Meehan, H. R. Mott, M. Vendruscolo, C. M. Dobson, and M. E. Welland, “Role of intermolecular forces in defining material properties of protein nanofibrils,” Science 318, 19001903 (2007).
http://dx.doi.org/10.1126/science.1150057
28.
E. B. Stukalin and A. B. Kolomeisky, “Simple growth models of rigid multifilament biopolymers,” J. Chem. Phys. 121, 1097 (2004).
http://dx.doi.org/10.1063/1.1759316
29.
J. F. Smith, T. P. J. Knowles, C. M. Dobson, C. E. Macphee, and M. E. Welland, “Characterization of the nanoscale properties of individual amyloid fibrils,” Proc. Natl. Acad. Sci. U. S. A. 103, 1580615811 (2006).
http://dx.doi.org/10.1073/pnas.0604035103
30.
W. Han and K. Schulten, “Fibril Elongation by Aβ17-42: Kinetic network analysis of hybrid-resolution molecular dynamics simulations,” J. Am. Chem. Soc. 136, 12450 (2014).
http://dx.doi.org/10.1021/ja507002p
31.
A. Zaccone, I. Terentjev, L. DiMichele, and E. M. Terentjev, “Fragmentation and depolymerisation of non-covalently bonded filaments,” J. Chem. Phys. 142, 114905 (2015).
http://dx.doi.org/10.1063/1.4914925
32.
H. A. Kramers, “Brownian motion in a field of force and the diffusion model of chemical reactions,” Physica 7, 284 (1940).
http://dx.doi.org/10.1016/S0031-8914(40)90098-2
33.
A. Zaccone and E. M. Terentjev, “Theory of thermally activated ionization and dissociation of bound states,” Phys. Rev. Lett. 108, 038302 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.038302
34.
J. L. Jiménez, E. J. Nettleton, M. Bouchard, C. V. Robinson, C. M. Dobson, and H. R. Saibil, “The protofilament structure of insulin amyloid fibrils,” Proc. Natl. Acad. Sci. U. S. A. 99, 91969201 (2002).
http://dx.doi.org/10.1073/pnas.142459399
35.
A. K. Buell, J. R. Blundell, C. M. Dobson, M. E. Welland, E. M. Terentjev, and T. P. J. Knowles, “Frequency factors in a landscape model of filamentous protein aggregation,” Phys. Rev. Lett. 104, 228101 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.228101
36.
M. G. Saunders and G. A. Voth, “Comparison between actin filament models: coarse-graining reveals essential differences,” Structure 20, 641653 (2012).
http://dx.doi.org/10.1016/j.str.2012.02.008
37.
J. W. Chu and G. A. Voth, “Allostery of actin filaments: Molecular dynamics simulations and coarse-grained analysis,” Proc. Natl. Acad. Sci. U. S. A. 102, 1311113116 (2005).
http://dx.doi.org/10.1073/pnas.0503732102
38.
M. G. Saunders and G. A. Voth, “Water molecules in the nucleotide binding cleft of actin: Effects on subunit conformation and implications for ATP hydrolysis,” J. Mol. Biol. 413, 279 (2011).
http://dx.doi.org/10.1016/j.jmb.2011.07.068
39.
L. R. Otterbein, P. Graceffa, and R. Dominguez, “The crystal structure of uncomplexated actin in the ADP state,” Science 293, 708711 (2001).
http://dx.doi.org/10.1126/science.1059700
40.
T. Oda, M. Iwasa, T. Aihara, Y. Maeda, and A. Narita, “The nature of the globular-to fibrous-actin transition,” Nature 457, 441445 (2009).
http://dx.doi.org/10.1038/nature07685
41.
T. Fujii, A. H. Iwane, T. Yanagida, and K. Namba, “Direct visualization of secondary structures of F-actin by electron cryomicroscopy,” Nature 467, 724 (2010).
http://dx.doi.org/10.1038/nature09372
42.
J. C. Phillips et al., “Scalable molecular dynamics with NAMD,” J. Comput. Chem. 26, 17811802 (2005).
http://dx.doi.org/10.1002/jcc.20289
43.
S. Plimpton, “Fast parallel algorithms for short-range molecular dynamics,” J. Comput. Phys. 117, 119 (1995).
http://dx.doi.org/10.1006/jcph.1995.1039
44.
M. Matsumoto and T. Nishimura, “Mersenne twister: A 623-dimensionally equidistributed uniform pseudo-random number generator,” ACM Trans. Model. Comput. Simul. 8, 330 (1998).
http://dx.doi.org/10.1145/272991.272995
45.
C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, “NIH Image to ImageJ: 25 years of image analysis,” Nat. Methods 9, 671675 (2012).
http://dx.doi.org/10.1038/nmeth.2089
http://aip.metastore.ingenta.com/content/aip/journal/jcp/145/10/10.1063/1.4962366
Loading
/content/aip/journal/jcp/145/10/10.1063/1.4962366
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/145/10/10.1063/1.4962366
2016-09-14
2016-10-01

Abstract

While a significant body of investigations have been focused on the process of protein self-assembly, much less is understood about the reverse process of a filament breaking due to thermal motion into smaller fragments, or depolymerization of subunits from the filament ends. Indirect evidence for actin and amyloid filament fragmentation has been reported, although the phenomenon has never been directly observed either experimentally or in simulations. Here we report the direct observation of filament depolymerization and breakup in a minimal, calibrated model of coarse-grained molecular simulation. We quantify the orders of magnitude by which the depolymerization rate from the filament ends is larger than fragmentation rate and establish the law / = exp[(ε − ε)/ ] = exp[0.5ε/ ], which accounts for the topology and energy of bonds holding the filament together. This mechanism and the order-of-magnitude predictions are well supported by direct experimental measurements of depolymerization of insulin amyloid filaments.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/145/10/1.4962366.html;jsessionid=fx0HboN0axHLaaNFGML7i2xe.x-aip-live-02?itemId=/content/aip/journal/jcp/145/10/10.1063/1.4962366&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/145/10/10.1063/1.4962366&pageURL=http://scitation.aip.org/content/aip/journal/jcp/145/10/10.1063/1.4962366'
Right1,Right2,Right3,