Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/145/10/10.1063/1.4962367
1.
E. G. McRae, J. Phys. Chem. 61, 562 (1957).
http://dx.doi.org/10.1021/j150551a012
2.
F. Jensen, J. Chem. Theory Comput. 6, 2726 (2010).
http://dx.doi.org/10.1021/ct1003324
3.
S. Jakobsen, K. Kristensen, and F. Jensen, J. Chem. Theory Comput. 9, 3978 (2013).
http://dx.doi.org/10.1021/ct400452f
4.
J. Tomasi, B. Mennucci, and R. Cammi, Chem. Rev. 105, 2999 (2005).
http://dx.doi.org/10.1021/cr9904009
5.
A. Warshel and M. Levitt, J. Mol. Biol. 103, 227 (1976).
http://dx.doi.org/10.1016/0022-2836(76)90311-9
6.
H. M. Senn and W. Thiel, Angew. Chem., Int. Ed. 48, 1198 (2009).
http://dx.doi.org/10.1002/anie.200802019
7.
U. C. Singh and P. A. Kollman, J. Comput. Chem. 7, 718 (1986).
http://dx.doi.org/10.1002/jcc.540070604
8.
M. J. Field, P. A. Bash, and M. Karplus, J. Comput. Chem. 11, 700 (1990).
http://dx.doi.org/10.1002/jcc.540110605
9.
G. Fradelos and T. A. Wesołowski, J. Phys. Chem. A 115, 10018 (2011).
http://dx.doi.org/10.1021/jp203192g
10.
L. Serrano-Andrés, M. P. Fülscher, and G. Karlström, Int. J. Quantum Chem. 65, 167 (1997).
http://dx.doi.org/10.1002/(SICI)1097-461X(1997)65:2<167::AID-QUA8>3.0.CO;2-U
11.
C. Amovilli and B. Mennucci, J. Phys. Chem. B 101, 1051 (1997).
http://dx.doi.org/10.1021/jp9621991
12.
N. A. Besley and J. D. Hirst, J. Phys. Chem. A 102, 10791 (1998).
http://dx.doi.org/10.1021/jp982645f
13.
N. A. Besley and J. D. Hirst, J. Am. Chem. Soc. 121, 8559 (1999).
http://dx.doi.org/10.1021/ja990064d
14.
C. R. Vosmeer, K. Kiewisch, K. Keijzer, L. Visscher, and D. P. Geerke, Phys. Chem. Chem. Phys. 16, 17857 (2014).
http://dx.doi.org/10.1039/c4cp02401j
15.
A. Öhrn and G. Karlström, Mol. Phys. 104, 3087 (2006).
http://dx.doi.org/10.1080/00268970600965629
16.
B. Mennucci, C. Amovilli, and J. Tomasi, Chem. Phys. Lett. 286, 221 (1998).
http://dx.doi.org/10.1016/s0009-2614(98)00105-5
17.
A. Bernhardsson, R. Lindh, G. Karlström, and B. O. Roos, Chem. Phys. Lett. 251, 141 (1996).
http://dx.doi.org/10.1016/0009-2614(96)00127-3
18.
J. M. H. Olsen, C. Steinmann, K. Ruud, and J. Kongsted, J. Phys. Chem. A 119, 5344 (2015).
http://dx.doi.org/10.1021/jp510138k
19.
J. M. Olsen, K. Aidas, and J. Kongsted, J. Chem. Theory Comput. 6, 3721 (2010).
http://dx.doi.org/10.1021/ct1003803
20.
J. M. H. Olsen and J. Kongsted, Adv. Quantum Chem. 61, 107 (2011).
http://dx.doi.org/10.1016/B978-0-12-386013-2.00003-6
21.
W. Humphrey, A. Dalke, and K. Schulten, J. Mol. Graphics 14, 33 (1996).
http://dx.doi.org/10.1016/0263-7855(96)00018-5
22.
S. Huzinaga and A. A. Cantu, J. Chem. Phys. 55, 5543 (1971).
http://dx.doi.org/10.1063/1.1675720
23.
J. Olsen and P. Jørgensen, J. Chem. Phys. 82, 3235 (1985).
http://dx.doi.org/10.1063/1.448223
24.
T. Helgaker, S. Coriani, P. Jørgensen, K. Kristensen, J. Olsen, and K. Ruud, Chem. Rev. 112, 543 (2012).
http://dx.doi.org/10.1021/cr2002239
25.
K. Kristensen, J. Kauczor, T. Kjærgaard, and P. Jørgensen, J. Chem. Phys. 131, 044112 (2009).
http://dx.doi.org/10.1063/1.3173828
26.
P. Norman, Phys. Chem. Chem. Phys. 13, 20519 (2011).
http://dx.doi.org/10.1039/c1cp21951k
27.
M. N. Pedersen, E. D. Hedegård, J. M. H. Olsen, J. Kauczor, P. Norman, and J. Kongsted, J. Chem. Theory Comput. 10, 1164 (2014).
http://dx.doi.org/10.1021/ct400946k
28.
K. Aidas, C. Angeli, K. L. Bak, V. Bakken, R. Bast, L. Boman, O. Christiansen, R. Cimiraglia, S. Coriani, P. Dahle, E. K. Dalskov, U. Ekström, T. Enevoldsen, J. J. Eriksen, P. Ettenhuber, B. Fernández, L. Ferrighi, H. Fliegl, L. Frediani, K. Hald, A. Halkier, C. Hättig, H. Heiberg, T. Helgaker, A. C. Hennum, H. Hettema, E. Hjertenæs, S. Høst, I.-M. Høyvik, M. F. Iozzi, B. Jansik, H. J. Aa. Jensen, D. Jonsson, P. Jørgensen, J. Kauczor, S. Kirpekar, T. Kjærgaard, W. Klopper, S. Knecht, R. Kobayashi, H. Koch, J. Kongsted, A. Krapp, K. Kristensen, A. Ligabue, O. B. Lutnæs, J. I. Melo, K. V. Mikkelsen, R. H. Myhre, C. Neiss, C. B. Nielsen, P. Norman, J. Olsen, J. M. H. Olsen, A. Osted, M. J. Packer, F. Pawlowski, T. B. Pedersen, P. F. Provasi, S. Reine, Z. Rinkevicius, T. A. Ruden, K. Ruud, V. Rybkin, P. Salek, C. C. M. Samson, A. S. de Merás, T. Saue, S. P. A. Sauer, B. Schimmelpfennig, K. Sneskov, A. H. Steindal, K. O. Sylvester-Hvid, P. R. Taylor, A. M. Teale, E. I. Tellgren, D. P. Tew, A. J. Thorvaldsen, L. Thøgersen, O. Vahtras, M. A. Watson, D. J. D. Wilson, M. Ziolkowski, and H. Ågren, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 4, 269 (2014).
http://dx.doi.org/10.1002/wcms.1172
29.
The PE library developers, PElib: The polarizable embedding library (development version), 2016, http://gitlab.com/pe-software/pelib-public.
30.
T. Yanai, D. P. Tew, and N. C. Handy, Chem. Phys. Lett. 393, 51 (2004).
http://dx.doi.org/10.1016/j.cplett.2004.06.011
31.
T. H. Dunning, J. Chem. Phys. 90, 1007 (1989).
http://dx.doi.org/10.1063/1.456153
32.
R. A. Kendall, T. H. Dunning, and R. J. Harrison, J. Chem. Phys. 96, 6796 (1992).
http://dx.doi.org/10.1063/1.462569
33.
C. Hattig and F. Weigend, J. Chem. Phys. 113, 5154 (2000).
http://dx.doi.org/10.1063/1.1290013
34.
R. Ahlrichs, M. Bär, M. Häser, H. Horn, and C. Kölmel, Chem. Phys. Lett. 162, 165 (1989).
http://dx.doi.org/10.1016/0009-2614(89)85118-8
35.
D. Jacquemin, E. A. Perpète, G. E. Scuseria, I. Ciofini, and C. Adamo, J. Chem. Theory Comput. 4, 123 (2008).
http://dx.doi.org/10.1021/ct700187z
http://aip.metastore.ingenta.com/content/aip/journal/jcp/145/10/10.1063/1.4962367
Loading
/content/aip/journal/jcp/145/10/10.1063/1.4962367
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/145/10/10.1063/1.4962367
2016-09-12
2016-09-27

Abstract

We study excited states of cholesterol in solution and show that, in this specific case, solute wave-function confinement is the main effect of the solvent. This is rationalized on the basis of the polarizable density embedding scheme, which in addition to polarizable embedding includes non-electrostatic repulsion that effectively confines the solute wave function to its cavity. We illustrate how the inclusion of non-electrostatic repulsion results in a successful identification of the intense transition, which was not possible using an embedding method that only includes electrostatics. This underlines the importance of non-electrostatic repulsion in quantum-mechanical embedding-based methods.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/145/10/1.4962367.html;jsessionid=sP8_QDvKfPtnoOiPX-Q4cO2g.x-aip-live-03?itemId=/content/aip/journal/jcp/145/10/10.1063/1.4962367&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/145/10/10.1063/1.4962367&pageURL=http://scitation.aip.org/content/aip/journal/jcp/145/10/10.1063/1.4962367'
Right1,Right2,Right3,