Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/145/10/10.1063/1.4962670
1.
O. Golonzka, M. Khalil, N. Demirdöven, and A. Tokmakoff, Phys. Rev. Lett. 86, 21542157 (2000).
http://dx.doi.org/10.1103/PhysRevLett.86.2154
2.
M. C. Asplund, M. T. Zanni, and R. M. Hochstrasser, Proc. Natl. Acad. Sci. U. S. A. 97, 82198224 (2000).
http://dx.doi.org/10.1073/pnas.140227997
3.
D. M. Jonas, Annu. Rev. Phys. Chem. 54, 425463 (2003).
http://dx.doi.org/10.1146/annurev.physchem.54.011002.103907
4.
T. Brixner, T. Mancal, I. V. Stiopkin, and G. R. Fleming, J. Chem. Phys. 121, 42214236 (2004).
http://dx.doi.org/10.1063/1.1776112
5.
M. L. Cowan, J. P. Ogilvie, and R. J. D. Miller, Chem. Phys. Lett. 386, 184189 (2004).
http://dx.doi.org/10.1016/j.cplett.2004.01.027
6.
J. P. Ogilvie and K. J. Kubarych, Adv. At., Mol., Opt. Phys. 57, 249321 (2009).
http://dx.doi.org/10.1016/S1049-250X(09)57005-X
7.
P. Hamm and M. T. Zanni, Concepts and Methods of 2D Infrared Spectroscopy (Cambridge University Press, Cambridge, 2011).
8.
J. C. Wright, Annu. Rev. Phys. Chem. 62, 209230 (2011).
http://dx.doi.org/10.1146/annurev-physchem-032210-103551
9.
G. S. Schlau-Cohen, A. Ishizaki, and G. R. Fleming, Chem. Phys. 386, 122 (2011).
http://dx.doi.org/10.1016/j.chemphys.2011.04.025
10.
K. L. M. Lewis and J. P. Ogilvie, J. Phys. Chem. Lett. 3, 503510 (2012).
http://dx.doi.org/10.1021/jz201592v
11.
A. Chenu and G. D. Scholes, Annu. Rev. Phys. Chem. 66, 6996 (2015).
http://dx.doi.org/10.1146/annurev-physchem-040214-121713
12.
K. W. Stone, D. B. Turner, K. Gundogdu, S. T. Cundiff, and K. A. Nelson, Acc. Chem. Res. 42, 14521461 (2009).
http://dx.doi.org/10.1021/ar900122k
13.
L. Yang, I. V. Schweigert, S. T. Cundiff, and S. Mukamel, Phys. Rev. B 75, 125302 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.125302
14.
E. van Veldhoven, C. Khurmi, X. Zhang, and M. A. Berg, ChemPhysChem 8, 17611765 (2007).
http://dx.doi.org/10.1002/cphc.200700088
15.
C. Khurmi and M. A. Berg, J. Chem. Phys. 129, 064504 (2008).
http://dx.doi.org/10.1063/1.2960589
16.
S. J. Kern, S. Kalyanasis, and M. A. Berg, Nano Lett. 11, 34933498 (2011).
http://dx.doi.org/10.1021/nl202086b
17.
K. Sahu, S. J. Kern, and M. A. Berg, J. Phys. Chem. A 115, 79847993 (2011).
http://dx.doi.org/10.1021/jp2046068
18.
M. A. Berg, Adv. Chem. Phys. 150, 1102 (2012).
http://dx.doi.org/10.1002/9781118197714.ch1
19.
K. Sahu, H. Wu, and M. A. Berg, J. Am. Chem. Soc. 135, 10021005 (2013).
http://dx.doi.org/10.1021/ja3112109
20.
S. D. Verma, S. A. Corcelli, and M. A. Berg, J. Phys. Chem. Lett. 7, 504508 (2016).
http://dx.doi.org/10.1021/acs.jpclett.5b02835
21.
Z. Guo, P. G. Giokas, T. P. Cheshire, O. F. Williams, D. J. Dirkes, W. You, and A. M. Moran, J. Phys. Chem. A 120, 57735790 (2016).
http://dx.doi.org/10.1021/acs.jpca.6b04313
22.
Y. Wang, K. Hang, N. A. Anderson, and T. Lian, J. Phys. Chem. B 107, 94349440 (2003).
http://dx.doi.org/10.1021/jp034935o
23.
Z. Guo, B. P. Molesky, T. P. Cheshire, and A. M. Moran, J. Chem. Phys. 143, 124202 (2015).
http://dx.doi.org/10.1063/1.4931473
24.
B. A. Borgias, S. R. Cooper, Y. B. Koh, and K. N. Raymond, Inorg. Chem. 23, 10091016 (1984).
http://dx.doi.org/10.1021/ic00176a005
25.
A. T. N. Kumar, L. Zhu, J. F. Christian, A. Demidov, and P. M. Champion, J. Phys. Chem. B 105, 78477856 (2001).
http://dx.doi.org/10.1021/jp0101209
26.
P. G. Giokas, “Investigating Molecule-Semiconductor Interfaces with Nonlinear Spectroscopies,” Ph.D. thesis (University of North Carolina, 2016).
http://dx.doi.org/10.1021/acs.jpca.6b04313
27.
L. D. Zusman, Chem. Phys. 49, 295304 (1980).
http://dx.doi.org/10.1016/0301-0104(80)85267-0
28.
H. Sumi and R. A. Marcus, J. Chem. Phys. 84, 48944914 (1985).
http://dx.doi.org/10.1063/1.449978
29.
Y. J. Yan, M. Sparpaglione, and S. Mukamel, J. Phys. Chem. 92, 48424853 (1988).
http://dx.doi.org/10.1021/j100328a010
30.
A. A. Stuchebrukov and X. Song, J. Chem. Phys. 101, 93549365 (1994).
http://dx.doi.org/10.1063/1.468444
31.
M. A. Berg and J. R. Darvin, J. Chem. Phys. 145, 054119 (2016).
http://dx.doi.org/10.1063/1.4960186
32.
J. C. Owrutsky, D. Raftery, and R. M. Hochstrasser, Annu. Rev. Phys. Chem. 45, 519555 (1994).
http://dx.doi.org/10.1146/annurev.pc.45.100194.002511
33.
P. F. Barbara, T. J. Meyer, and M. A. Ratner, J. Phys. Chem. 100, 1314813168 (1996).
http://dx.doi.org/10.1021/jp9605663
34.
H. Sumi, J. Phys. Soc. Jpn. 49, 17011712 (1980).
http://dx.doi.org/10.1143/JPSJ.49.1701
35.
C. Reichardt and T. Welton, Solvents and Solvent Effects in Organic Chemistry, 4th ed. (Wiley-VCH, Weinheim, 2011).
36.
S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford University Press, New York, 1995).
http://aip.metastore.ingenta.com/content/aip/journal/jcp/145/10/10.1063/1.4962670
Loading
/content/aip/journal/jcp/145/10/10.1063/1.4962670
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/145/10/10.1063/1.4962670
2016-09-14
2016-09-28

Abstract

Analogues of 2D photon echo methods in which two population times are sampled have recently been used to expose heterogeneity in chemical kinetics. In this work, the two population times sampled for a transition metal complex are transformed into a 2D rate spectrum using the maximum entropy method. The 2D rate spectrum suggests heterogeneity in the vibrational cooling (VC) rate within the ensemble. In addition, a cross peak associated with VC and back electron transfer (BET) dynamics reveals correlation between the two processes. We hypothesize that an increase in the strength of solute-solvent interactions, which accelerates VC, drives the system toward the activationless regime of BET.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/145/10/1.4962670.html;jsessionid=XEEawwX19-vDmIBElrfan6VF.x-aip-live-02?itemId=/content/aip/journal/jcp/145/10/10.1063/1.4962670&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/145/10/10.1063/1.4962670&pageURL=http://scitation.aip.org/content/aip/journal/jcp/145/10/10.1063/1.4962670'
Right1,Right2,Right3,