Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/145/11/10.1063/1.4962257
1.
H. Shirota and E. W. Castner, Jr., “Why are viscosities lower for ionic liquids with -CH2Si(CH3)3 vs. -CH2C(CH3)3 substitutions on the imidazolium cations?,” J. Phys. Chem. B 109, 2157621585 (2005).
http://dx.doi.org/10.1021/jp053930j
2.
H. Shirota, J. F. Wishart, and E. W. Castner, Jr., “Intermolecular interactions and dynamics of room temperature ionic liquids that have silyl- and siloxy-substituted imidazolium cations,” J. Phys. Chem. B 111, 48194829 (2007).
http://dx.doi.org/10.1021/jp067126o
3.
S. H. Chung, R. Lopato, S. G. Greenbaum, H. Shirota, E. W. Castner, Jr., and J. F. Wishart, “A nuclear magnetic resonance study of room temperature ionic liquids with CH2Si(CH3)3 vs. CH2C(CH3)3 substitutions on the imidazolium cations,” J. Phys. Chem. B 111, 48854893 (2007).
http://dx.doi.org/10.1021/jp071755w
4.
H. Niedermeyer, M. A. A. Rani, P. D. Lickiss, J. P. Hallett, T. Welton, A. J. P. White, and P. A. Hunt, “Understanding siloxane functionalised ionic liquids,” Phys. Chem. Chem. Phys. 12, 20182029 (2010).
http://dx.doi.org/10.1039/b922011a
5.
T. Endo, S. Nemugaki, Y. Matsushita, Y. Sakai, H. Ozaki, Y. Hiejima, Y. Kimura, and K. Takahashi, “Fast solute diffusivity in ionic liquids with silyl or siloxane groups studied by the transient grating method,” Chem. Phys. 472, 128134 (2016).
http://dx.doi.org/10.1016/j.chemphys.2016.03.016
6.
J. E. Bara, T. K. Carlisle, C. J. Gabriel, D. Camper, A. Finotello, D. L. Gin, and R. D. Noble, “Guide to CO2 separations in imidazolium-based room-temperature ionic liquids,” Ind. Eng. Chem. Res. 48, 27392751 (2009).
http://dx.doi.org/10.1021/ie8016237
7.
A. S. Vuk, V. Jovanovski, A. Pollet-Villard, I. Jerman, and B. Orel, “Imidazolium-based ionic liquid derivatives for application in electrochromic devices,” Sol. Energy Mater. Sol. Cells 92, 126135 (2008).
http://dx.doi.org/10.1016/j.solmat.2007.01.023
8.
V. Jovanovski, E. Stathatos, B. Orel, and P. Lianos, “Dye-sensitized solar cells with electrolyte based on a trimethoxysilane-derivatized ionic liquid,” Thin Solid Films 511-512, 634637 (2006).
http://dx.doi.org/10.1016/j.tsf.2005.12.010
9.
S. Bulut, M. A. A. Rani, T. Welton, P. D. Lickiss, and I. Krossing, “Preparation of [Al(hfip)4] based ionic liquids with siloxane-functionalized cations and their physical properties in comparison with their [Tf2N] analogues,” ChemPhysChem 13, 18021805 (2012).
http://dx.doi.org/10.1002/c.phc.201200028
10.
J. Tan and S. Feng, “Effect of counterions on micellization of pyrrolidinium based silicone ionic liquids in aqueous solutions,” J. Chem. Eng. Data 59, 18301834 (2014).
http://dx.doi.org/10.1021/je401118k
11.
H. Shirota and H. Fukazawa, “Atom substitution effects in ionic liquids: A microscopic view by femtosecond Raman-induced Kerr effect spectroscopy,” in Ionic Liquids: Theory, Properties, New Approaches, edited by A. Kokorin (InTech, Rijeka, Croatia, 2011), Chap. 9, pp. 201224.
12.
R. Hayes, G. G. Warr, and R. Atkin, “Structure and nanostructure in ionic liquids,” Chem. Rev. 115(13), 63576426 (2015).
http://dx.doi.org/10.1021/cr500411q
13.
H. K. Kashyap, J. J. Hettige, H. V. R. Annapureddy, and C. J. Margulis, “SAXS anti-peaks reveal the length-scales of dual positive-negative and polar-apolar ordering in room-temperature ionic liquids,” Chem. Commun. 48, 51035105 (2012).
http://dx.doi.org/10.1039/C2CC30609C
14.
J. C. Araque, J. J. Hettige, and C. J. Margulis, “Modern room temperature ionic liquids, a simple guide to understanding their structure and how it may relate to dynamics,” J. Phys. Chem. B 119(4), 1272712740 (2015).
http://dx.doi.org/10.1021/acs.jpcb.5b05506
15.
S. M. Urahata and M. C. C. Ribeiro, “Structure of ionic liquids of 1-alkyl-3-methylimidazolium cations: A systematic computer simulation study,” J. Chem. Phys. 120, 18551863 (2004).
http://dx.doi.org/10.1063/1.1635356
16.
M. G. Del Popolo and G. A. Voth, “On the structure and dynamics of ionic liquids,” J. Phys. Chem. B 108, 17441752 (2004).
http://dx.doi.org/10.1021/jp0364699
17.
A. Triolo, O. Russina, R. Caminiti, H. Shirota, H. Y. Lee, C. S. Santos, N. S. Murthy, and E. W. Castner, Jr., “Comparing intermediate range order for alkyl- vs. ether-substituted cations in ionic liquids,” Chem. Commun. 48, 49594961 (2012).
http://dx.doi.org/10.1039/C2CC31550E
18.
O. Russina and A. Triolo, “New experimental evidence supporting the mesoscopic segregation model in room temperature ionic liquids,” Faraday Discuss. 154, 97109 (2012).
http://dx.doi.org/10.1039/C1FD00073J
19.
O. Russina, A. Triolo, L. Gontrani, R. Caminiti, D. Xiao, J. Hines, G. Larry, R. A. Bartsch, E. L. Quitevis, N. Pleckhova, and K. R. Seddon, “Morphology and intermolecular dynamics of 1-alkyl-3-methylimidazolium bis(trifluoromethane)sulfonylamide ionic liquids: Structural and dynamic evidence of nanoscale segregation,” J. Phys.: Condens. Matter 21, 424121 (2009).
http://dx.doi.org/10.1088/0953-8984/21/42/424121
20.
C. E. S. Bernardes, K. Shimizu, A. I. M. C. L. Ferreira, L. M. N. B. F. Santos, and J. N. C. Lopes, “Structure and aggregation in the 1,3-Dialkyl-imidazolium Bis(trifluoromethylsulfonyl)imide ionic liquid family: 2. From single to double long alkyl side chains,” J. Phys. Chem. B 118, 68856895 (2014).
http://dx.doi.org/10.1021/jp502968u
21.
C. Hardacre, J. D. Holbrey, C. L. Mullan, T. G. A. Youngs, and D. T. Bowron, “Small angle neutron scattering from 1-alkyl-3-methylimidazolium hexafluorophosphate ionic liquids (C(n)mim PF6, n = 4, 6, and 8),” J. Chem. Phys. 133, 074510 (2010).
http://dx.doi.org/10.1063/1.3473825
22.
K. Fujii, R. Kanzaki, T. Takamuku, Y. Kameda, S. Kohara, M. Kanakubo, M. Shibayama, S. ichi Ishiguro, and Y. Umebayashi, “Experimental evidences for molecular origin of low-Q peak in neutron/X-ray scattering of 1-alkyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide ionic liquids,” J. Chem. Phys. 135, 244502 (2011).
http://dx.doi.org/10.1063/1.3672097
23.
Y. Umebayashi, W.-L. Chung, T. Mitsugi, S. Fukuda, M. Takeuchi, K. Fujii, T. Takamuku, R. Kanzaki, and S.-i. Ishiguro, “Liquid structure and the ion-ion interactions of ethylammonium nitrate ionic liquid studied by large angle X-ray scattering and molecular dynamics simulations,” J. Comput. Chem., Jpn. 7, 125134 (2008).
http://dx.doi.org/10.2477/jccj.H2013
24.
K. Fujii, S. Seki, S. Fukuda, T. Takamuku, S. Kohara, Y. Kameda, Y. Umebayashi, and S.-i. Ishiguro, “Liquid structure and conformation of a low-viscosity ionic liquid, N-methyl-N-propyl-pyrrolidinium bis(fluorosulfonyl) imide studied by high-energy X-ray scattering,” J. Mol. Liq. 143, 6469 (2008).
http://dx.doi.org/10.1016/j.molliq.2008.05.011
25.
S. Fukuda, M. Takeuchi, K. Fujii, R. Kanzaki, T. Takamuku, K. Chiba, H. Yamamoto, Y. Umebayashi, and S.-i. Ishiguro, “Liquid structure of N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl) amide ionic liquid studied by large angle X-ray scattering and molecular dynamics simulations,” J. Mol. Liq. 143, 27 (2008).
http://dx.doi.org/10.1016/j.molliq.2008.02.012
26.
R. Kanzaki, T. Mitsugi, S. Fukuda, K. Fujii, M. Takeuchi, Y. Soejima, T. Takamuku, T. Yamaguchi, Y. Umebayashi, and S. Ishiguro, “Ion-ion interaction in room temperature ionic liquid 1-ethyl-3-methylimidazolium tetrafluoroborate studied by large angle X-ray scattering experiment and molecular dynamics simulations,” J. Mol. Liq. 147, 7782 (2009).
http://dx.doi.org/10.1016/j.molliq.2008.10.003
27.
K. Fujii, Y. Soejima, Y. Kyoshoin, S. Fukuda, R. Kanzaki, Y. Umebayashi, T. Yamaguchi, S.-i. Ishiguro, and T. Takamuku, “Liquid structure of room-temperature ionic liquid, 1-ethyl-3-methylimidazolium bis-(trifluoromethanesulfonyl) imide,” J. Phys. Chem. B 112, 43294336 (2008).
http://dx.doi.org/10.1021/jp7105499
28.
M. Kofu, M. Nagao, T. Ueki, Y. Kitazawa, Y. Nakamura, S. Sawamura, M. Watanabe, and O. Yamamuro, “Heterogeneous slow dynamics of imidazolium-based ionic liquids studied by neutron spin echo,” J. Phys. Chem. B 117, 27732781 (2013).
http://dx.doi.org/10.1021/jp312608r
29.
K. B. Dhungana, L. F. O. Faria, B. Wu, M. Liang, M. C. C. Ribeiro, C. J. Margulis, and E. W. Castner, Jr., “Structure of cyano-anion ionic liquids: X-ray scattering and simulations,” J. Chem. Phys. 145, 024503 (2016).
http://dx.doi.org/10.1063/1.4955186
30.
M. G. D. Pópolo, R. M. Lynden-Bell, and J. Kohanoff, “Ab initio molecular dynamics simulation of a room temperature ionic liquid,” J. Phys. Chem. B 109, 58955902 (2005).
http://dx.doi.org/10.1021/jp044414g
31.
J. J. Hettige, J. C. Araque, H. K. Kashyap, and C. J. Margulis, “Communication: Nanoscale structure of tetradecyltrihexylphosphonium based ionic liquids,” J. Chem. Phys. 144, 121102 (2016).
http://dx.doi.org/10.1063/1.4944678
32.
E. W. Castner, Jr., C. J. Margulis, M. Maroncelli, and J. F. Wishart, “Ionic liquids: Structure and photochemical reactions,” Annu. Rev. Phys. Chem. 62, 85105 (2011).
http://dx.doi.org/10.1146/annurev-physchem-032210-103421
33.
H. K. Kashyap, C. S. Santos, R. P. Daly, J. J. Hettige, N. S. Murthy, H. Shirota, E. W. Castner, Jr., and C. J. Margulis, “How does the ionic liquid organizational landscape change when nonpolar cationic alkyl groups are replaced by polar isoelectronic diethers?,” J. Phys. Chem. B 117, 11301135 (2013).
http://dx.doi.org/10.1021/jp311032p
34.
C. S. Santos, H. V. R. Annapureddy, N. S. Murthy, H. K. Kashyap, E. W. Castner, Jr., and C. J. Margulis, “Temperature-dependent structure of methyltributylammonium bis(trifluoromethylsulfonyl)amide: X-ray scattering and simulations,” J. Chem. Phys. 134, 064517 (2011).
http://dx.doi.org/10.1063/1.3526958
35.
A. Hammersley, S. Svensson, M. Hanfland, A. Fitch, and D. Hausermann, “Two-dimensional detector software: From real detector to idealised image or two-theta scan,” High Pressure Res. 14, 235248 (1996).
http://dx.doi.org/10.1080/08957959608201408
36.
X. Qiu, J. W. Thompson, and S. J. L. Billinge, “PDFgetX2: A GUI-driven program to obtain the pair distribution function from X-ray powder diffraction data,” J. Appl. Crystallogr. 37, 678 (2004).
http://dx.doi.org/10.1107/S0021889804011744
37.
M. J. Abraham, T. Murtola, R. Schulz, S. Pll, J. C. Smith, B. Hess, and E. Lindahl, “GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers,” SoftwareX 1-2, 1925 (2015).
http://dx.doi.org/10.1016/j.softx.2015.06.001
38.
S. Pronk, S. Pall, R. Schulz, P. Larsson, P. Bjelkmar, R. Apostolov, M. R. Shirts, J. C. Smith, P. M. Kasson, D. van der Spoel, B. Hess, and E. Lindahl, “GROMACS 4.5: A high- throughput and highly parallel open source molecular simulation toolkit,” Bioinformatics 29, 845854 (2013).
http://dx.doi.org/10.1093/bioinformatics/btt055
39.
H. J. C. Berendsen, D. van der Spoel, and R. van Drunen, “GROMACS: A message-passing parallel molecular dynamics implementation,” Comput. Phys. Commun. 91, 4356 (1995).
http://dx.doi.org/10.1016/0010-4655(95)00042-E
40.
S. Nosé, “A unified formulation of the constant temperature molecular dynamics methods,” J. Chem. Phys. 81, 511519 (1984).
http://dx.doi.org/10.1063/1.447334
41.
S. Nosé, “A molecular dynamics method for simulations in the canonical ensemble,” Mol. Phys. 52, 255268 (1984).
http://dx.doi.org/10.1080/00268978400101201
42.
M. Parrinello and A. Rahman, “Polymorphic transitions in single crystals: A new molecular dynamics method,” J. Appl. Phys. 52, 71827190 (1981).
http://dx.doi.org/10.1063/1.328693
43.
T. Darden, D. York, and L. Pedersen, “Particle mesh Ewald: An N*log(N) method for Ewald sums in large systems,” J. Chem. Phys. 98, 1008910092 (1993).
http://dx.doi.org/10.1063/1.464397
44.
U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee, and L. G. Pedersen, “A smooth particle mesh Ewald method,” J. Chem. Phys. 103, 85778593 (1995).
http://dx.doi.org/10.1063/1.470117
45.
J. N. C. Lopes and A. A. H. Pádua, “CL&P: A generic and systematic force field for ionic liquids modeling,” Theor. Chem. Acc. 131, 1129 (2012).
http://dx.doi.org/10.1007/s00214-012-1129-7
46.
J. N. C. Lopes, J. Deschamps, and A. A. H. Pádua, “Modeling ionic liquids using a systematic all-atom force field,” J. Phys. Chem. B 108, 20382047 (2004).
http://dx.doi.org/10.1021/jp0362133
47.
J. N. C. Lopes and A. A. H. Pádua, “Molecular force field for ionic liquids composed of triflate or bistriflylimide anions,” J. Phys. Chem. B 108, 1689316898 (2004).
http://dx.doi.org/10.1021/jp0476545
48.
J. N. C. Lopes and A. A. H. Pádua, “Molecular force field for ionic liquids. III: Imidazolium, pyridinium, and phosphonium cations; chloride, bromide, and dicyanamide anions,” J. Phys. Chem. B 110, 1958619592 (2006).
http://dx.doi.org/10.1021/jp063901o
49.
R. C. Rizzo and W. L. Jorgensen, “OPLS All-atom model for amines: Resolution of the amine hydration problem,” J. Am. Chem. Soc. 121, 48274836 (1999).
http://dx.doi.org/10.1021/ja984106u
50.
J. C. Araque, S. K. Yadav, M. Shadeck, M. Maroncelli, and C. J. Margulis, “How is diffusion of neutral and charged tracers related to the structure and dynamics of a room-temperature ionic liquid? Large deviations from Stokes and Einstein behavior explained,” J. Phys. Chem. B 119, 70157029 (2015).
http://dx.doi.org/10.1021/acs.jpcb.5b01093
51.
H. K. Kashyap, C. S. Santos, H. V. R. Annapureddy, N. S. Murthy, C. J. Margulis, and E. W. Castner, Jr., “Temperature-dependent structure of ionic liquids: X-ray scattering and simulations,” Faraday Discuss. 154, 133143 (2012).
http://dx.doi.org/10.1039/C1FD00059D
52.
H. K. Kashyap, C. S. Santos, N. S. Murthy, J. J. Hettige, K. Kerr, S. Ramati, J. Gwon, M. Gohdo, S. I. Lall-Ramnarine, J. F. Wishart, C. J. Margulis, and E. W. Castner, Jr., “Structure of 1-Alkyl-1-methylpyrrolidinium Bis(trifluoromethylsulfonyl)amide ionic liquids with linear, branched, and cyclic alkyl groups,” J. Phys. Chem. B 117, 1532815337 (2013).
http://dx.doi.org/10.1021/jp403518j
53.
C. Oostenbrink, A. Villa, A. E. Mark, and W. F. V. Gunsteren, “A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force-field parameter sets 53A5 and 53A6,” J. Comput. Chem. 25, 16561676 (2004).
http://dx.doi.org/10.1002/jcc.20090
54.
M. R. Frierson, M. R. Imam, V. B. Zalkow, and N. L. Allinger, “The MM2 force field for silanes and polysilanes,” J. Org. Chem. 53, 52485258 (1988).
http://dx.doi.org/10.1021/jo00257a010
55.
H. Sun, “Ab initio calculations and force field development for computer simulation of polysilanes,” Macromolecules 28, 701712 (1995).
http://dx.doi.org/10.1021/ma00107a006
56.
H. Sun and D. Rigby, “Polysiloxanes: Ab initio force field and structural, conformational and thermophysical properties,” Spectrochim. Acta, Part A 53, 13011323 (1997).
http://dx.doi.org/10.1016/S1386-1425(97)00013-9
57.
N. Kawanishi, N. Shirai, Y. Sato, K. Hatano, and Y. Kurono, “Rearrangement of cis- and trans-2-Methyl-3-(substituted phenyl)-1,2,3,4-tetrahydroisoquinolinium 2-Methylides,” J. Org. Chem. 60, 42724275 (1995).
http://dx.doi.org/10.1021/jo00118a053
58.
Z. Baktır, M. Akkurt, N. Şireci, and H. Küçükbay, “1-(Prop-2-en-1-yl)-3-[(trimethylsilyl)methyl]benzimidazolium bromide monohydrate,” Acta Crystallogr., Sect. E: Struct. Rep. Online 66, o2393o2394 (2010).
http://dx.doi.org/10.1107/S1600536810033015
59.
C. R. Groom, I. J. Bruno, M. P. Lightfoot, and S. C. Ward, “Structure TMSIMP10.cif, The Cambridge Structural Database,” Acta Cryst. B 72, 171179 (2016).
http://dx.doi.org/10.1107/S2052520616003954
60.
A. Sakuragi, N. Shirai, Y. Sato, Y. Kurono, and K. Hatano, “Rearrangement of cis and trans-2-methyl-1-(substituted phenyl)isoindolinium 2-methylides,” J. Org. Chem. 59, 148153 (1994).
http://dx.doi.org/10.1021/jo00080a024
61.
M. Akkurt, Í. Çelik, H. Küçükbay, N. Şireci, and O. Büyükgüngör, “1-Benzyl-3-[(trimethylsilyl)methyl]benzimidazolium chloride monohydrate,” Acta Crystallogr., Sect. E: Struct. Rep. Online 66, o1770o1771 (2010).
http://dx.doi.org/10.1107/S1600536810024128
62.
P. A. Doyle and P. S. Turner, “Relativistic Hartree-Fock X-ray and electron scattering factors,” Acta Crystallogr., Sect. A 24, 390397 (1968).
http://dx.doi.org/10.1107/S0567739468000756
63.
D. T. Cromer and J. B. Mann, “X-ray scattering factors computed from numerical Hartree-Fock wave functions,” Acta Crystallogr., Sect. A 24, 321324 (1968).
http://dx.doi.org/10.1107/S0567739468000550
64.
International Tables for Crystallography : Volume C: Mathematical, Physical and Chemical Tables, Third Edition, edited by E. Prince (Kluwer Academic Publishers, 2004).
65.
E. Lorch, “Neutron diffraction by germania, silica and radiation-damaged silica glasses,” J. Phys. C: Solid State Phys. 2, 229237 (1969).
http://dx.doi.org/10.1088/0022-3719/2/2/305
66.
J. Du, C. J. Benmore, R. Corrales, R. T. Hart, and J. K. R. Weber, “A molecular dynamics simulation interpretation of neutron and X-ray diffraction measurements on single phase Y2O3- Al2O3 glasses,” J. Phys.: Condens. Matter 21, 205102 (2009).
http://dx.doi.org/10.1088/0953-8984/21/20/205102
67.
J. L. Lebowitz, “Exact solution of generalized Percus-Yevick equation for a mixture of hard spheres,” Phys. Rev. 133, A895A899 (1964).
http://dx.doi.org/10.1103/PhysRev.133.A895
68.
N. W. Ashcroft and D. C. Langreth, “Structure of binary liquid mixtures. I,” Phys. Rev. 156, 685692 (1967).
http://dx.doi.org/10.1103/PhysRev.156.685
69.
T. L. Greaves, D. F. Kennedy, S. T. Mudie, and C. J. Drummond, “Diversity observed in the nanostructure of protic ionic liquids,” J. Phys. Chem. B 114, 1002210031 (2010).
http://dx.doi.org/10.1021/jp103863z
70.
R. Hayes, S. Imberti, G. G. Warr, and R. Atkin, “Pronounced sponge-like nanostructure in propylammonium nitrate,” Phys. Chem. Chem. Phys. 13, 1354413551 (2011).
http://dx.doi.org/10.1039/C1CP21080G
71.
M. Campetella, S. De Santis, R. Caminiti, P. Ballirano, C. Sadun, L. Tanzi, and L. Gontrani, “Is a medium-range order pre-peak possible for ionic liquids without an aliphatic chain?,” RSC Adv. 5, 5093850941 (2015).
http://dx.doi.org/10.1039/C5RA07567J
72.
M. Brehm and B. Kirchner, “TRAVIS - A free analyzer and visualizer for monte carlo and molecular dynamics trajectories,” J. Chem. Inf. Model. 51, 20072023 (2011), TRAVIS Version 20160101.
http://dx.doi.org/10.1021/ci200217w
73.
W. Humphrey, A. Dalke, and K. Schulten, “VMD–Visual Molecular Dynamics,” J. Mol. Graphics 14, 3338 (1996).
http://dx.doi.org/10.1016/0263-7855(96)00018-5
74.
J. N. Canongia Lopes, K. Shimizu, A. A. H. Pádua, Y. Umebayashi, S. Fukuda, K. Fujii, and S.-i. Ishiguro, “A tale of two ions: The conformational landscapes of Bis(trifluoromethanesulfonyl)amide and N,N-Dialkylpyrrolidinium,” J. Phys. Chem. B 112, 14651472 (2008).
http://dx.doi.org/10.1021/jp076997a
http://aip.metastore.ingenta.com/content/aip/journal/jcp/145/11/10.1063/1.4962257
Loading
/content/aip/journal/jcp/145/11/10.1063/1.4962257
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/145/11/10.1063/1.4962257
2016-09-15
2016-09-28

Abstract

Significantly lower viscosities result when a single alkyl carbon is replaced by a silicon atom on the side chain of an ionic liquid cation. To further explore this effect, we compare liquid structure factors measured using high-energy X-ray scattering and calculated using molecular dynamics simulations. Four ionic liquids are studied that each has a common anion, bis(trifluoromethylsulfonyl)amide (). The four cations for this series of -anion ionic liquids are 1-methyl-3-trimethylsilylmethylimidazolium (Si-mim+), 1-methyl-3-neopentylimidazolium (C-mim+), 1-methyl-3-pentamethyldisiloxymethylimidazolium (SiOSi-mim+), and 1-methyl-1-trimethylsilylmethylpyrrolidinium (Si-pyrr+). To achieve quantitative agreement between the structure factors measured using high-energy X-ray scattering and molecular dynamics simulations, new transferable parameters for silicon were calibrated and added to the existing force fields.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/145/11/1.4962257.html;jsessionid=Bvs2h_PXpZETgmeeTxmD7XuN.x-aip-live-02?itemId=/content/aip/journal/jcp/145/11/10.1063/1.4962257&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/145/11/10.1063/1.4962257&pageURL=http://scitation.aip.org/content/aip/journal/jcp/145/11/10.1063/1.4962257'
Right1,Right2,Right3,