Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
J. Abate and W. Whitt, “A unified framework for numerically inverting Laplace transforms,” INFORMS J. Comput. 18(4), 408421 (2006).
S. A. Adelman and J. D. Doll, “Generalized Langevin equation approach for atom/solid-surface scattering: Collinear atom/harmonic chain model,” J. Chem. Phys. 61, 4242 (1974).
S. A. Adelman and J. D. Doll, “Generalized Langevin equation approach for atom/solid-surface scattering: General formulation for classical scattering off harmonic solids,” J. Chem. Phys. 64, 2375 (1976).
D. A. Beard and T. Schlick, “Inertial stochastic dynamics. I. Long-time-step methods for Langevin dynamics,” J. Chem. Phys. 112(17), 73137322 (2000).
D. A. Beard and T. Schlick, “Inertial stochastic dynamics. II. Influence of inertia on slow kinetic processes of supercoiled DNA,” J. Chem. Phys. 112(17), 73237338 (2000).
M. Berkowitz, J. D. Morgan, and J. Andrew McCammon, “Generalized Langevin dynamics simulations with arbitrary time-dependent memory kernels,” J. Chem. Phys. 78, 3256 (1983).
M. Berkowitz, J. D. Morgan, D. J. Kouri, and J. A. McCammon, “Memory kernels from molecular dynamics,” J. Chem. Phys. 75(5), 24622463 (1981).
M. Chen, X. Li, and C. Liu, “Computation of the memory functions in the generalized Langevin models for collective dynamics of macromolecules,” J. Chem. Phys. 141, 064112 (2014).
A. J. Chorin and P. Stinis, “Problem reduction, renormalization, and memory,” Commun. Appl. Math. Comput. Sci. 1, 127 (2005).
G. Ciccotti and J.-P. Ryckaert, “On the derivation of the generalized Langevin equation for interacting Brownian particles,” J. Stat. Phys. 26(1), 7382 (1981).
S. Curtarolo and G. Ceder, “Dynamics of an inhomogeneously coarse grained multiscale system,” Phys. Rev. Lett. 88(25), 255504 (2002).
E. Darve, J. Solomon, and A. Kia, “Computing generalized Langevin equations and generalized Fokker-Planck equations,” Proc. Natl. Acad. Sci. 106(27), 1088410889 (2009).
J. L. Doob, “The elementary Gaussian processes,” Ann. Math. Stat. 15, 229282 (1944).
N. El Ghani, N. Masmoudi et al., “Diffusion limit of the Vlasov-Poisson-Fokker-Planck system,” Commun. Math. Sci. 8(2), 463479 (2010).
P. Espanol, “Statistical mechanics of coarse-graining,” in Novel Methods in Soft Matter Simulations (Springer, 2004), pp. 69115.
D. J. Evans and G. P. Morriss, Statistical Mechanics of Nonequilibrium Liquids (Academic Press, 2008).
T. Goudon, “Hydrodynamic limit for the Vlasov–Poisson–Fokker–Planck system: Analysis of the two-dimensional case,” Math. Models Methods Appl. Sci 15(05), 737752 (2005).
T. Goudon, J. Nieto, F. Poupaud, and J. Soler, “Multidimensional high-field limit of the electrostatic Vlasov–Poisson–Fokker–Planck system,” J. Differ. Equations 213(2), 418442 (2005).
E. Guàrdia and J. A. Padró, “Generalized langevin dynamics simulation of interacting particles,” J. Chem. Phys. 83(4), 19171920 (1985).
C. Hijón, P. Español, E. Vanden-Eijnden, and R. Delgado-Buscalioni, “Mori–Zwanzig formalism as a practical computational tool,” Faraday Discuss. 144, 301322 (2010).
G. A. Huber and J. Andrew McCammon, “Browndye: A software package for Brownian dynamics,” Comput. Phys. Commun. 181(11), 18961905 (2010).
S. Izvekov and G. A. Voth, “Modeling real dynamics in the coarse-grained representation of condensed phase systems,” J. Chem. Phys. 125, 151101151104 (2006).
D. Kauzlarić, J. T. Meier, P. Español, S. Succi, A. Greiner, and J. G. Korvink, “Bottom-up coarse-graining of a simple graphene model: The blob picture,” J. Chem. Phys. 134(6), 064106 (2011).
R. Kubo, “The fluctuation-dissipation theorem,” Rep. Prog. Phys. 29(1), 255284 (1966).
H. Lei, N. Baker, and X. Li, “The generalized Langevin equation and the parameterization from data,” preprint arXiv:1606.02596 (2016).
X. Li, “A coarse-grained molecular dynamics model for crystalline solids,” Int. J. Numer. Methods Eng. 83, 986997 (2010).
X. Li, “Coarse-graining molecular dynamics models using an extended Galerkin projection,” Int. J. Numer. Methods Eng. 99, 157 (2014).
X. Li and W. E, “Variational boundary conditions for molecular dynamics simulations of solids at low temperature,” Commun. Comput. Phys. 1, 136176 (2006).
X. Li and W. E, “Boundary conditions for molecular dynamics simulations at finite temperature: Treatment of the heat bath,” Phys. Rev. B 76, 104107 (2007).
Z. Li, X. Bian, X. Li, and G. Em Karniadakis, “Incorporation of memory effects in coarse-grained modeling via the Mori-Zwanzig formalism,” J. Chem. Phys. 143(24), 243128 (2015).
W. K. Liu, E. G. Karpov, and H. S. Park, Nano Mechanics and Materials: Theory, Multiscale Methods and Applications (John Wiley & Sons, 2006).
L. Ma, X. Li, and C. Liu, “Derivation and approximation of coarse-grained dynamics from Langevin dynamics,” e-print arXiv:1605.04886 [math.NA] (2016).
J. Nieto, F. Poupaud, and J. Soler, “High-field limit for the Vlasov-Poisson-Fokker-Planck system,” Arch. Ration. Mech. Anal. 158(1), 2959 (2001).
B. Oliva, X. Daura, E. Querol, F. X. Avilés, and O. Tapia, “A generalized Langevin dynamics approach to model solvent dynamics effects on proteins via a solvent-accessible surface. The carboxypeptidase a inhibitor protein as a model,” Theor. Chem. Acc. 105(2), 101109 (2000).
F. Poupaud and J. Soler, “Parabolic limit and stability of the Vlasov–Fokker–Planck system,” Math. Models Methods Appl. Sci 10(07), 10271045 (2000).
A. Ricci and G. Ciccotti, “Algorithms for Brownian dynamics,” Mol. Phys. 101(12), 19271931 (2003).
H. Risken, Fokker-Planck Equation (Springer, 1984).
M. San Miguel and J. M. Sancho, “A colored-noise approach to Brownian motion in position space. Corrections to the Smoluchowski equation,” J. Stat. Phys. 22(5), 605624 (1980).
T. Schlick, Molecular Modeling and Simulation: An Interdisciplinary Guide (Springer-Verlag, 2002).
M. Stepanova, “Dynamics of essential collective motions in proteins: Theory,” Phys. Rev. E 76, 051918 (2007).
U. M. Titulaer, “Corrections to the Smoluchowski equation in the presence of hydrodynamic interactions,” Physica A 100(2), 251265 (1980).
U. M. Titulaer, “A systematic solution procedure for the Fokker-Planck equation of a Brownian particle in the high-friction case,” Physica A 91(3), 321344 (1978).
J. C. Tully, “Dynamics of gas–surface interactions: 3d generalized Langevin model applied to fcc and bcc surfaces,” J. Chem. Phys. 73(4), 19751985 (1980).
W. F. Van Gunsteren and H. J. C. Berendsen, “Algorithms for Brownian dynamics,” Mol. Phys. 45(3), 637647 (1982).
H. Wu, T.-C. Lin, and C. Liu, “Diffusion limit of kinetic equations for multiple species charged particles,” Arch. Ration. Mech. Anal. 215(2), 419441 (2015).
R. Zwanzig, “Nonlinear generalized Langevin equations,” J. Stat. Phys. 9, 215220 (1973).

Data & Media loading...


Article metrics loading...



We present the reduction of generalized Langevin equations to a coordinate-only stochastic model, which in its exact form involves a forcing term with memory and a general Gaussian noise. It will be shown that a similar fluctuation-dissipation theorem still holds at this level. We study the approximation by the typical Brownian dynamics as a first approximation. Our numerical test indicates how the intrinsic frequency of the kernel function influences the accuracy of this approximation. In the case when such an approximate is inadequate, further approximations can be derived by embedding the nonlocal model into an extended dynamics without memory. By imposing noises in the auxiliary variables, we show how the second fluctuation-dissipation theorem is still exactly satisfied.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd