Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/145/11/10.1063/1.4962447
1.
M. H. Thiemens, S. Chakraborty, and G. Dominguez, Annu. Rev. Phys. Chem. 63(1), 155177 (2012).
http://dx.doi.org/10.1146/annurev-physchem-032511-143657
2.
R. R. Meier, J. A. R. Samson, Y. Chung, E. M. Lee, and Z. X. He, Planet. Space Sci. 39(8), 11971207 (1991).
http://dx.doi.org/10.1016/0032-0633(91)90171-6
3.
M.-C. Liang, A. N. Heays, B. R. Lewis, S. T. Gibson, and Y. L. Yung, Astrophys. J., Lett. 664(2), L115 (2007).
http://dx.doi.org/10.1086/520881
4.
S. Chakraborty, P. Yanchulova, and M. H. Thiemens, Science 342(6157), 463466 (2013).
http://dx.doi.org/10.1126/science.1242237
5.
B. Marty, M. Chaussidon, R. C. Wiens, A. J. G. Jurewicz, and D. S. Burnett, Science 332(6037), 15331536 (2011).
http://dx.doi.org/10.1126/science.1204656
6.
E. Furi and B. Marty, Nat. Geosci. 8(7), 515522 (2015).
http://dx.doi.org/10.1038/ngeo2451
7.
J. F. Kerridge, Geochim. Cosmochim. Acta 49(8), 17071714 (1985).
http://dx.doi.org/10.1016/0016-7037(85)90141-3
8.
C.-C. Kung and R. N. Clayton, Earth Planet. Sci. Lett. 38(2), 421435 (1978).
http://dx.doi.org/10.1016/0012-821X(78)90117-6
9.
M. M. Grady, I. P. Wright, L. P. Carr, and C. T. Pillinger, Geochim. Cosmochim. Acta 50(12), 27992813 (1986).
http://dx.doi.org/10.1016/0016-7037(86)90228-0
10.
H. Busemann, A. F. Young, C. M. O. D. Alexander, P. Hoppe, S. Mukhopadhyay, and L. R. Nittler, Science 312(5774), 727730 (2006).
http://dx.doi.org/10.1126/science.1123878
11.
K. D. McKeegan, J. Aléon, J. Bradley, D. Brownlee, H. Busemann, A. Butterworth, M. Chaussidon, S. Fallon, C. Floss, J. Gilmour, M. Gounelle, G. Graham, Y. Guan, P. R. Heck, P. Hoppe, I. D. Hutcheon, J. Huth, H. Ishii, M. Ito, S. B. Jacobsen, A. Kearsley, L. A. Leshin, M.-C. Liu, I. Lyon, K. Marhas, B. Marty, G. Matrajt, A. Meibom, S. Messenger, S. Mostefaoui, S. Mukhopadhyay, K. Nakamura-Messenger, L. Nittler, R. Palma, R. O. Pepin, D. A. Papanastassiou, F. Robert, D. Schlutter, C. J. Snead, F. J. Stadermann, R. Stroud, P. Tsou, A. Westphal, E. D. Young, K. Ziegler, L. Zimmermann, and E. Zinner, Science 314(5806), 17241728 (2006).
http://dx.doi.org/10.1126/science.1135992
12.
G. Briani, M. Gounelle, Y. Marrocchi, S. Mostefaoui, H. Leroux, E. Quirico, and A. Meibom, Proc. Natl. Acad. Sci. U. S. A. 106(26), 1052210527 (2009).
http://dx.doi.org/10.1073/pnas.0901546106
13.
S. Chakraborty, B. H. Muskatel, T. L. Jackson, M. Ahmed, R. D. Levine, and M. H. Thiemens, Proc. Natl. Acad. Sci. U. S. A. 111(41), 1470414709 (2014).
http://dx.doi.org/10.1073/pnas.1410440111
14.
L. Li, P. Cartigny, and M. Ader, Geochim. Cosmochim. Acta 73(20), 62826297 (2009).
http://dx.doi.org/10.1016/j.gca.2009.07.016
15.
H. Lefebvre-Brion and B. R. Lewis, Mol. Phys. 105(11-12), 16251630 (2007).
http://dx.doi.org/10.1080/00268970701390180
16.
X. Li, A. N. Heays, R. Visser, W. Ubachs, B. R. Lewis, S. T. Gibson, and E. F. van Dishoeck, Astron. Astrophys. 555, A14 (2013).
http://dx.doi.org/10.1051/0004-6361/201220625
17.
A. N. Heays, G. D. Dickenson, E. J. Salumbides, N.d. Oliveira, D. Joyeux, L. Nahon, B. R. Lewis, and W. Ubachs, J. Chem. Phys. 135(24), 244301 (2011).
http://dx.doi.org/10.1063/1.3672165
18.
A. N. Heays, R. Visser, R. Gredel, W. Ubachs, B. R. Lewis, S. T. Gibson, and E. F. van Dishoeck, Astron. Astrophys. 562, A61 (2014).
http://dx.doi.org/10.1051/0004-6361/201322832
19.
B. R. Lewis, A. N. Heays, S. T. Gibson, H. Lefebvre-Brion, and R. Lefebvre, J. Chem. Phys. 129(16), 164306 (2008).
http://dx.doi.org/10.1063/1.2990656
20.
D. Stahel, M. Leoni, and K. Dressler, J. Chem. Phys. 79(6), 25412558 (1983).
http://dx.doi.org/10.1063/1.446166
21.
D. Spelsberg and W. Meyer, J. Chem. Phys. 115(14), 64386449 (2001).
http://dx.doi.org/10.1063/1.1400139
22.
J. P. Sprengers, W. Ubachs, K. G. H. Baldwin, B. R. Lewis, and W. U. L. Tchang-Brillet, J. Chem. Phys. 119(6), 31603173 (2003).
http://dx.doi.org/10.1063/1.1589478
23.
G. Stark, K. P. Huber, K. Yoshino, P. L. Smith, and K. Ito, J. Chem. Phys. 123(21), 214303 (2005).
http://dx.doi.org/10.1063/1.2134703
24.
B. R. Lewis, S. T. Gibson, W. Zhang, H. Lefebvre-Brion, and J.-M. Robbe, J. Chem. Phys. 122(14), 144302 (2005).
http://dx.doi.org/10.1063/1.1869986
25.
B. R. Lewis, S. T. Gibson, J. P. Sprengers, W. Ubachs, A. Johansson, and C. G. Wahlstrom, J. Chem. Phys. 123(23), 236101236103 (2005).
http://dx.doi.org/10.1063/1.2137722
26.
J. P. Sprengers, W. Ubachs, A. Johansson, A. L’Huillier, C.-G. Wahlström, R. Lang, B. R. Lewis, and S. T. Gibson, J. Chem. Phys. 120(19), 89738978 (2004).
http://dx.doi.org/10.1063/1.1704640
27.
C. Y. R. Wu, D. L. Judge, M.-H. Tsai, Y.-C. Lin, T.-S. Yih, J.-I. Lo, H.-S. Fung, Y.-Y. Lee, B. R. Lewis, A. N. Heays, and S. T. Gibson, J. Chem. Phys. 136(4), 044301 (2012).
http://dx.doi.org/10.1063/1.3676781
28.
P. A. Heimann, M. Koike, C. W. Hsu, D. Blank, X. M. Yang, A. G. Suits, Y. T. Lee, M. Evans, C. Y. Ng, C. Flaim, and H. A. Padmore, Rev. Sci. Instrum. 68(5), 19451951 (1997).
http://dx.doi.org/10.1063/1.1148082
29.
R. N. Clayton, Nature 415(6874), 860861 (2002).
http://dx.doi.org/10.1038/415860b
30.
M. H. Thiemens and J. E. Heidenreich, Science 219(4588), 10731075 (1983).
http://dx.doi.org/10.1126/science.219.4588.1073
31.
B. H. Muskatel, F. Remacle, and R. D. Levine, J. Phys. Chem. A 116(46), 1131111318 (2012).
http://dx.doi.org/10.1021/jp305354h
32.
H. Kuze, T. Sato, T. Kambe, S. Hayashida, and Y. Tatsumi, Chem. Phys. Lett. 455(4–6), 156158 (2008).
http://dx.doi.org/10.1016/j.cplett.2008.02.080
33.
B. H. Muskatel, F. Remacle, M. H. Thiemens, and R. D. Levine, Proc. Natl. Acad. Sci. U. S. A. 108(15), 6020 (2011).
http://dx.doi.org/10.1073/pnas.1102767108
34.
W. Ubachs, Chem. Phys. Lett. 268(1-2), 201206 (1997).
http://dx.doi.org/10.1016/S0009-2614(97)00179-6
35.
G. Stark, B. R. Lewis, A. N. Heays, K. Yoshino, P. L. Smith, and K. Ito, J. Chem. Phys. 128(11), 114302114310 (2008).
http://dx.doi.org/10.1063/1.2834933
36.
B. R. Lewis, K. G. H. Baldwin, A. N. Heays, S. T. Gibson, J. P. Sprengers, W. Ubachs, and M. Fujitake, J. Chem. Phys. 129(20), 204303 (2008).
http://dx.doi.org/10.1063/1.3023034
37.
J. P. Sprengers, W. Ubachs, and K. G. H. Baldwin, J. Chem. Phys. 122(14), 144301144306 (2005).
http://dx.doi.org/10.1063/1.1869985
38.
J. P. Sprengers, E. Reinhold, W. Ubachs, K. G. H. Baldwin, and B. R. Lewis, J. Chem. Phys. 123(14), 144315 (2005).
http://dx.doi.org/10.1063/1.2062189
39.
A. N. Heays, J. M. Ajello, A. Aguilar, B. R. Lewis, and S. T. Gibson, Astrophys. J., Suppl. Ser. 211(2), 28 (2014).
http://dx.doi.org/10.1088/0067-0049/211/2/2841
40.
M. O. Vieitez, T. I. Ivanov, C. A. de Lange, W. Ubachs, A. N. Heays, B. R. Lewis, and G. Stark, Journal Chem. Phys. 128(13), 134313 (2008).
http://dx.doi.org/10.1063/1.2883955
http://aip.metastore.ingenta.com/content/aip/journal/jcp/145/11/10.1063/1.4962447
Loading
/content/aip/journal/jcp/145/11/10.1063/1.4962447
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/145/11/10.1063/1.4962447
2016-09-15
2016-09-30

Abstract

N is a diatomic molecule with complex electronic structure. Interstate crossings are prominent in the high energy domain, introducing significant perturbations to the system. Nitrogen mainly photodissociates in the vacuum ultraviolet (VUV) region of the electromagnetic spectrum through both direct and indirect predissociation. Due to the complexity introduced by these perturbations, the nitrogen isotopic fractionation in N photodissociation is extremely hard to calculate, and an experimental approach is required. Here we present new data of N-isotopic fractionation in N photodissociation at low temperature (80 K), which shows a distinctly different 15N enrichment profile compared to that at relatively higher temperatures (200 and 300 K). The new data, important to understanding the N-isotopic compositions measured in meteorites and other planetary bodies, are discussed in light of the knowledge of N photochemistry and calculated photoabsorption cross sections in the VUV.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/145/11/1.4962447.html;jsessionid=QwsQvTnVUdzwjV-MnZDGfzzo.x-aip-live-03?itemId=/content/aip/journal/jcp/145/11/10.1063/1.4962447&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/145/11/10.1063/1.4962447&pageURL=http://scitation.aip.org/content/aip/journal/jcp/145/11/10.1063/1.4962447'
Right1,Right2,Right3,