Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
K. K. Irikura and D. J. Frurip, Computational Thermochemistry, ACS Symposium Series (ACS, 1998), Vol. 677.
W. M. F. Fabian, “Accurate thermochemistry from quantum chemical calculations?,” Monatsh. Chem. 139, 309318 (2008).
S. Manzetti, H. Behzadi, O. Andersen, and D. van der Spoel, “Fullerenes toxicity and electronic properties,” Environ. Chem. Lett. 11, 105118 (2013).
S. Manzetti, E. R. van der Spoel, and D. van der Spoel, “Chemical properties, environmental fate, and degradation of seven classes of pollutants,” Chem. Res. Toxicol. 27, 713737 (2014).
A. Walsh, “Inorganic materials: The quest for new functionality,” Nat. Chem. 7, 274275 (2015).
J. A. Pople, M. Head-Gordon, D. J. Fox, K. Raghavachari, and L. A. Curtiss, “Gaussian-1 theory: A general procedure for prediction of molecular energies,” J. Chem. Phys. 90, 56225629 (1989).
L. A. Curtiss, C. Jones, G. W. Trucks, K. Raghavachari, and J. A. Pople, “Gaussian-1 theory of molecular energies for second-row compounds,” J. Chem. Phys. 93, 25372545 (1990).
L. A. Curtiss, K. Raghavachari, G. W. Trucks, and J. A. Pople, “Gaussian-2 theory for molecular energies of first- and second-row compounds,” J. Chem. Phys. 94, 72217230 (1991).
L. A. Curtiss, K. Raghavachari, P. C. Redfern, V. Rassolov, and J. A. Pople, “Gaussian-3 (G3) theory for molecules containing first and second-row atoms,” J. Chem. Phys. 109, 77647776 (1998).
L. A. Curtiss, P. C. Redfern, and K. Raghavachari, “Gaussian-4 theory,” J. Chem. Phys. 126, 84108 (2007).
J. M. L. Martin and G. de Oliveira, “Towards standard methods for benchmark quality ab initio thermochemistry—W1 and W2 theory,” J. Chem. Phys. 111, 18431856 (1999).
S. Parthiban and J. M. L. Martin, “Assessment of W1 and W2 theories for the computation of electron affinities, ionization potentials, heats of formation, and proton affinities,” J. Chem. Phys. 114, 60146029 (2001).
E. C. Barnes, G. A. Petersson, J. A. Montgomery, M. J. Frisch, and J. M. L. Martin, “Unrestricted coupled cluster and Brueckner doubles variations of W1 theory,” J. Chem. Theory Comput. 5, 26872693 (2009).
A. Karton, E. Rabinovich, J. M. L. Martin, and B. Ruscic, “W4 theory for computational thermochemistry: In pursuit of confident sub-kJ/mol predictions,” J. Chem. Phys. 125, 144108 (2006).
A. Karton, S. Daon, and J. M. Martin, “W4-11: A high-confidence benchmark dataset for computational thermochemistry derived from first-principles W4 data,” Chem. Phys. Lett. 510, 165178 (2011).
J. A. Montgomery, Jr., M. J. Frisch, J. W. Ochterski, and G. A. Petersson, “A complete basis set model chemistry. VI. Use of density functional geometries and frequencies,” J. Chem. Phys. 110, 28222827 (1999).
J. A. Montgomery, Jr., M. J. Frisch, J. W. Ochterski, and G. A. Petersson, “A complete basis set model chemistry. VII. Use of the minimum population localization method,” J. Chem. Phys. 112, 65326542 (2000).
J. M. Simmie and K. P. Somers, “Benchmarking compound methods (CBS-QB3, CBS-APNO, G3, G4, W1BD) against the active thermochemical tables: A litmus test for cost-effective molecular formation enthalpies,” J. Phys. Chem. A 119, 72357246 (2015).
B. Njegic and M. S. Gordon, “Exploring the effect of anharmonicity of molecular vibrations on thermodynamic properties,” J. Chem. Phys. 125, 224102 (2006).
G. Katzer and A. F. Sax, “Beyond the harmonic approximation: Impact of anharmonic molecular vibrations on the thermochemistry of silicon hydrides,” J. Phys. Chem. A 106, 72047215 (2002).
G. Katzer and A. F. Sax, “Identification and thermodynamic treatment of several types of large-amplitude motions,” J. Comput. Chem. 26, 14381451 (2005).
J. M. L. Martin, “Heat of atomization of sulfur trioxide, SO3: A benchmark for computational thermochemistry,” Chem. Phys. Lett. 310, 271276 (1999).
J. M. L. Martin and P. R. Taylor, “Benchmark ab initio thermochemistry of the isomers of diimide, N2H2, using accurate computed structures and anharmonic force fields,” Mol. Phys. 96, 681692 (1999).
S. Parthiban and J. M. L. Martin, “Fully ab initio atomization energy of benzene via Weizmann-2 theory,” J. Chem. Phys. 115, 20512054 (2001).
J. Zheng, T. Yu, E. Papajak, I. M. Alecu, S. L. Mielke, and D. G. Truhlar, “Practical methods for including torsional anharmonicity in thermochemical calculations on complex molecules: The internal-coordinate multi-structural approximation,” Phys. Chem. Chem. Phys. 13, 1088510907 (2011).
J. Zheng, S. L. Mielke, K. L. Clarkson, and D. G. Truhlar, “MSTor: A program for calculating partition functions, free energies, enthalpies, entropies, and heat capacities of complex molecules including torsional anharmonicity,” Comput. Phys. Commun. 183, 18031812 (2012).
J. Zheng and D. G. Truhlar, “Quantum thermochemistry: Multistructural method with torsional anharmonicity based on a coupled torsional potential,” J. Chem. Theory Comput. 9, 13561367 (2013).
J. Zheng and D. G. Truhlar, “Including torsional anharmonicity in canonical and microcanonical reaction path calculations,” J. Chem. Theory Comput. 9, 28752881 (2013).
J. Zheng, R. Meana-Pañeda, and D. G. Truhlar, “Prediction of experimentally unavailable product branching ratios for biofuel combustion: The role of anharmonicity in the reaction of isobutanol with OH,” J. Am. Chem. Soc. 136, 51505160 (2014).
D. A. McQuarrie and J. D. Simon, Molecular Thermodynamics (University Science books, Sausalito, CA, 1999).
N. O’Boyle, T. Vandermeersch, C. Flynn, A. Maguire, and G. Hutchison, “Confab—Systematic generation of diverse low-energy conformers,” J. Cheminf. 3, 8 (2011).
N. M. O’Boyle, M. Banck, C. A. James, C. Morley, T. Vandermeersch, and G. R. Hutchison, “Open Babel: An open chemical toolbox,” J. Cheminf. 3, 33 (2011).
S. Kim, P. A. Thiessen, E. E. Bolton, J. Chen, G. Fu, A. Gindulyte, L. Han, J. He, S. He, B. A. Shoemaker, J. Wang, B. Yu, J. Zhang, and S. H. Bryant, “PubChem substance and compound databases,” Nucleic Acids Res. 44, D12021213 (2016).
R. L. Rowley, W. V. Wilding, J. L. Oscarson, Y. Yang, and N. F. Giles, Data Compilation of Pure Chemical Properties (Design Institute for Physical Properties, American Institute for Chemical Engineering, New York, 2012).
H. H. Ku, “Notes on the use of propagation of error formulas,” J. Res. Natl. Bur. Stand., Sect. C 70C, 263273 (1966).
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, gaussian 09, Revision D.01, Gaussian, Inc., Wallingford, CT, 2009.
C. Caleman, P. J. van Maaren, M. Hong, J. S. Hub, L. T. Costa, and D. van der Spoel, “Force field benchmark of organic liquids: Density, enthalpy of vaporization, heat capacities, surface tension, compressibility, expansion coefficient and dielectric constant,” J. Chem. Theory Comput. 8, 6174 (2012).
D. van der Spoel, P. J. van Maaren, and C. Caleman, “GROMACS molecule & liquid database,” Bioinformatics 28, 752753 (2012).
N. M. Fischer, P. J. van Maaren, J. C. Ditz, A. Yildirim, and D. van der Spoel, “Properties of liquids in molecular dynamics simulations with explicit long-range Lennard Jones interactions,” J. Chem. Theory Comput. 11, 29382944 (2015).
D. R. Lide, CRC Handbook of Chemistry and Physics, 90th ed. (CRC Press, Cleveland, Ohio, 2009).
C. L. Yaws, Yaws’ Handbook of Thermodynamic Properties for Hydrocarbons and Chemicals (Knovel, 2009),
Thermophysical Properties of Pure Substances & Mixtures, DECHEMA Gesellschaft für Chemische Technik und Biotechnologie e.V., 2011,
C. L. Yaws, Yaws’ Critical Property Data for Chemical Engineers and Chemists (Knovel, 2012),
L. A. Curtiss, K. Raghavachari, P. C. Redfern, and J. A. Pople, “Assessment of Gaussian-3 and density functional theories for a larger experimental test set,” J. Chem. Phys. 112, 73747383 (2000).
L. A. Curtiss, P. C. Redfern, and K. Raghavachari, “Assessment of Gaussian-3 and density-functional theories on the G3/05 test set of experimental energies,” J. Chem. Phys. 123, 124107 (2005).
J. M. Martin, “Heats of formation of perchloric acid, HClO4, and perchloric anhydride, Cl2O7. Probing the limits of W1 and W2 theory,” J. Mol. Struct. 771, 1926 (2006).
D. Raymand, A. C. van Duin, M. Baudin, and K. Hermansson, “A reactive force field (reaxff) for zinc oxide,” Surf. Sci. 602, 10201031 (2008).
A. Karton, S. Parthiban, and J. M. L. Martin, “Post-CCSD(T) ab initio thermochemistry of halogen oxides and related hydrides XOX, XOOX, HOX, XOn, and HXOn (X = F, Cl), and evaluation of DFT methods for these systems,” J. Phys. Chem. A 113, 48024816 (2009).
D. Trogolo and J. S. Arey, “Benchmark thermochemistry of chloramines, bromamines, and bromochloramines: Halogen oxidants stabilized by electron correlation,” Phys. Chem. Chem. Phys. 17, 35843598 (2015).
M. V. D. Silva, R. Custodio, and M. H. M. Reis, “Determination of enthalpies of formation of fatty acids and esters by density functional theory calculations with an empirical correction,” Ind. Eng. Chem. Res. 54, 95459549 (2015).
R. S. Berry, “Correlation of rates of intramolecular tunneling processes, with application to some Group V compounds,” J. Chem. Phys. 32, 933938 (1960).
P. Russegger and J. Brickmann, “Quantum states of intramolecular nuclear motion with large amplitudes: Pseudorotation of trigonal bipyramidal molecules,” J. Chem. Phys. 62, 10861093 (1975).
A. Caligiana, V. Aquilanti, R. Burcl, N. C. Handy, and D. P. Tew, “Anharmonic frequencies and Berry pseudorotation motion in PF5,” Chem. Phys. Lett. 369, 335344 (2003).
J. E. Kilpatrick, K. S. Pitzer, and R. Spitzer, “The thermodynamics and molecular structure of cyclopentane,” J. Am. Chem. Soc. 69, 24832488 (1947).
D. O. Harris, G. G. Engerholm, C. A. Tolman, A. C. Luntz, R. A. Keller, H. Kim, and W. D. Gwinn, “Ring puckering in five-membered rings. I. General theory,” J. Chem. Phys. 50, 24382445 (1969).
J. Zheng, T. Yu, and D. G. Truhlar, “Multi-structural thermodynamics of C–H bond dissociation in hexane and isohexane yielding seven isomeric hexyl radicals,” Phys. Chem. Chem. Phys. 13, 1931819324 (2011).
K. S. Pitzer and W. D. Gwinn, “Energy levels and thermodynamic functions for molecules with internal rotation. I. Rigid frame with attached tops,” J. Chem. Phys. 10, 428440 (1942).
K. S. Pitzer, “Energy levels and thermodynamic functions for molecules with internal rotation: II. Unsymmetrical tops attached to a rigid frame,” J. Chem. Phys. 14, 239243 (1946).
A. P. Scott and L. Radom, “Harmonic vibrational frequencies: An evaluation of Hartree-Fock, Møller-Plesset, quadratic configuration interaction, density functional theory, and semiempirical scale factors,” J. Phys. Chem. 100, 1650216513 (1996).
J. E. Mayer, S. Brunauer, and M. G. Mayer, “The entropy of polyatomic molecules and the symmetry number,” J. Am. Chem. Soc. 55, 3753 (1933).
R. M. Dannenfelser, N. Surendran, and S. H. Yalkowsky, “Molecular symmetry and related properties,” SAR QSAR Environ. Res. 1, 273292 (1993).
R.-M. Dannenfelser and S. H. Yalkowsky, “Estimation of entropy of melting from molecular structure: A non-group contribution method,” Ind. Eng. Chem. Res. 35, 14831486 (1996).
C. A. Wulff, “Determination of barrier heights from low-temperature heat-capacity data,” J. Chem. Phys. 39, 12271234 (1963).
A. D. Boese, M. Oren, O. Atasoylu, J. M. L. Martin, M. Kallay, and J. Gauss, “W3 theory: Robust computational thermochemistry in the kJ/mol accuracy range,” J. Chem. Phys. 120, 41294141 (2004).
L. Goerigk and S. Grimme, “A thorough benchmark of density functional methods for general main group thermochemistry, kinetics, and noncovalent interactions,” Phys. Chem. Chem. Phys. 13, 66706688 (2011).
E. E. Bolton, S. Kim, and S. H. Bryant, “PubChem3D: Conformer generation,” J. Cheminf. 3, 4 (2011).
A. Supady, V. Blum, and C. Baldauf, “First-principles molecular structure search with a genetic algorithm,” J. Chem. Inf. Model. 55, 23382348 (2015).
Y. Lu, Y. Liu, Z. Xu, H. Li, H. Liu, and W. Zhu, “Halogen bonding for rational drug design and new drug discovery,” Expert Opin. Drug Discovery 7, 375383 (2012).
P. Metrangolo, H. Neukirch, T. Pilati, and G. Resnati, “Halogen bonding based recognition processes: A world parallel to hydrogen bonding,” Acc. Chem. Res. 38, 386395 (2005).
P. Politzer, P. Lane, M. C. Concha, Y. Ma, and J. S. Murray, “An overview of halogen bonding,” J. Mol. Model. 13, 305311 (2007).
S.-Y. Lu and I. Hamerton, “Recent developments in the chemistry of halogen-free flame retardant polymers,” Prog. Polym. Sci. 27, 16611712 (2002).

Data & Media loading...


Article metrics loading...



Large scale quantum calculations for molar enthalpy of formation 0), standard entropy ( 0), and heat capacity () are presented. A large data set may help to evaluate quantum thermochemistry tools in order to uncover possible hidden shortcomings and also to find experimental data that might need to be reinvestigated, indeed we list and annotate approximately 200 problematic thermochemistry measurements. Quantum methods systematically underestimate 0 for flexible molecules in the gas phase if only a single (minimum energy) conformation is taken into account. This problem can be tackled in principle by performing thermochemistry calculations for all stable conformations [Zheng , Phys. Chem. Chem. Phys. , 10885–10907 (2011)], but this is not practical for large molecules. We observe that the deviation of composite quantum thermochemistry recipes from experimental 0 corresponds roughly to the Boltzmann equation ( = RlnΩ), where R is the gas constant and Ω the number of possible conformations. This allows an empirical correction of the calculated entropy for molecules with multiple conformations. With the correction we find an RMSD from experiment of ≈13 J/mol K for 1273 compounds. This paper also provides predictions of Δ 0, 0, and for well over 700 compounds for which no experimental data could be found in the literature. Finally, in order to facilitate the analysis of thermodynamics properties by others we have implemented a new tool obthermo in the OpenBabel program suite [O’Boyle , J. Cheminf. , 33 (2011)] including a table of reference atomization energy values for popular thermochemistry methods.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd