Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/145/11/10.1063/1.4962627
1.
K. K. Irikura and D. J. Frurip, Computational Thermochemistry, ACS Symposium Series (ACS, 1998), Vol. 677.
http://dx.doi.org/10.1021/bk-1998-0677
2.
W. M. F. Fabian, “Accurate thermochemistry from quantum chemical calculations?,” Monatsh. Chem. 139, 309318 (2008).
http://dx.doi.org/10.1007/s00706-007-0798-8
3.
S. Manzetti, H. Behzadi, O. Andersen, and D. van der Spoel, “Fullerenes toxicity and electronic properties,” Environ. Chem. Lett. 11, 105118 (2013).
http://dx.doi.org/10.1007/s10311-012-0387-x
4.
S. Manzetti, E. R. van der Spoel, and D. van der Spoel, “Chemical properties, environmental fate, and degradation of seven classes of pollutants,” Chem. Res. Toxicol. 27, 713737 (2014).
http://dx.doi.org/10.1021/tx500014w
5.
A. Walsh, “Inorganic materials: The quest for new functionality,” Nat. Chem. 7, 274275 (2015).
http://dx.doi.org/10.1038/nchem.2213
6.
J. A. Pople, M. Head-Gordon, D. J. Fox, K. Raghavachari, and L. A. Curtiss, “Gaussian-1 theory: A general procedure for prediction of molecular energies,” J. Chem. Phys. 90, 56225629 (1989).
http://dx.doi.org/10.1063/1.456415
7.
L. A. Curtiss, C. Jones, G. W. Trucks, K. Raghavachari, and J. A. Pople, “Gaussian-1 theory of molecular energies for second-row compounds,” J. Chem. Phys. 93, 25372545 (1990).
http://dx.doi.org/10.1063/1.458892
8.
L. A. Curtiss, K. Raghavachari, G. W. Trucks, and J. A. Pople, “Gaussian-2 theory for molecular energies of first- and second-row compounds,” J. Chem. Phys. 94, 72217230 (1991).
http://dx.doi.org/10.1063/1.460205
9.
L. A. Curtiss, K. Raghavachari, P. C. Redfern, V. Rassolov, and J. A. Pople, “Gaussian-3 (G3) theory for molecules containing first and second-row atoms,” J. Chem. Phys. 109, 77647776 (1998).
http://dx.doi.org/10.1063/1.477422
10.
L. A. Curtiss, P. C. Redfern, and K. Raghavachari, “Gaussian-4 theory,” J. Chem. Phys. 126, 84108 (2007).
http://dx.doi.org/10.1063/1.2436888
11.
J. M. L. Martin and G. de Oliveira, “Towards standard methods for benchmark quality ab initio thermochemistry—W1 and W2 theory,” J. Chem. Phys. 111, 18431856 (1999).
http://dx.doi.org/10.1063/1.479454
12.
S. Parthiban and J. M. L. Martin, “Assessment of W1 and W2 theories for the computation of electron affinities, ionization potentials, heats of formation, and proton affinities,” J. Chem. Phys. 114, 60146029 (2001).
http://dx.doi.org/10.1063/1.1356014
13.
E. C. Barnes, G. A. Petersson, J. A. Montgomery, M. J. Frisch, and J. M. L. Martin, “Unrestricted coupled cluster and Brueckner doubles variations of W1 theory,” J. Chem. Theory Comput. 5, 26872693 (2009).
http://dx.doi.org/10.1021/ct900260g
14.
A. Karton, E. Rabinovich, J. M. L. Martin, and B. Ruscic, “W4 theory for computational thermochemistry: In pursuit of confident sub-kJ/mol predictions,” J. Chem. Phys. 125, 144108 (2006).
http://dx.doi.org/10.1063/1.2348881
15.
A. Karton, S. Daon, and J. M. Martin, “W4-11: A high-confidence benchmark dataset for computational thermochemistry derived from first-principles W4 data,” Chem. Phys. Lett. 510, 165178 (2011).
http://dx.doi.org/10.1016/j.cplett.2011.05.007
16.
J. A. Montgomery, Jr., M. J. Frisch, J. W. Ochterski, and G. A. Petersson, “A complete basis set model chemistry. VI. Use of density functional geometries and frequencies,” J. Chem. Phys. 110, 28222827 (1999).
http://dx.doi.org/10.1063/1.477924
17.
J. A. Montgomery, Jr., M. J. Frisch, J. W. Ochterski, and G. A. Petersson, “A complete basis set model chemistry. VII. Use of the minimum population localization method,” J. Chem. Phys. 112, 65326542 (2000).
http://dx.doi.org/10.1063/1.481224
18.
J. M. Simmie and K. P. Somers, “Benchmarking compound methods (CBS-QB3, CBS-APNO, G3, G4, W1BD) against the active thermochemical tables: A litmus test for cost-effective molecular formation enthalpies,” J. Phys. Chem. A 119, 72357246 (2015).
http://dx.doi.org/10.1021/jp511403a
19.
B. Njegic and M. S. Gordon, “Exploring the effect of anharmonicity of molecular vibrations on thermodynamic properties,” J. Chem. Phys. 125, 224102 (2006).
http://dx.doi.org/10.1063/1.2395940
20.
G. Katzer and A. F. Sax, “Beyond the harmonic approximation: Impact of anharmonic molecular vibrations on the thermochemistry of silicon hydrides,” J. Phys. Chem. A 106, 72047215 (2002).
http://dx.doi.org/10.1021/jp0257810
21.
G. Katzer and A. F. Sax, “Identification and thermodynamic treatment of several types of large-amplitude motions,” J. Comput. Chem. 26, 14381451 (2005).
http://dx.doi.org/10.1002/jcc.20280
22.
J. M. L. Martin, “Heat of atomization of sulfur trioxide, SO3: A benchmark for computational thermochemistry,” Chem. Phys. Lett. 310, 271276 (1999).
http://dx.doi.org/10.1016/S0009-2614(99)00749-6
23.
J. M. L. Martin and P. R. Taylor, “Benchmark ab initio thermochemistry of the isomers of diimide, N2H2, using accurate computed structures and anharmonic force fields,” Mol. Phys. 96, 681692 (1999).
http://dx.doi.org/10.1080/00268979909483004
24.
S. Parthiban and J. M. L. Martin, “Fully ab initio atomization energy of benzene via Weizmann-2 theory,” J. Chem. Phys. 115, 20512054 (2001).
http://dx.doi.org/10.1063/1.1385363
25.
J. Zheng, T. Yu, E. Papajak, I. M. Alecu, S. L. Mielke, and D. G. Truhlar, “Practical methods for including torsional anharmonicity in thermochemical calculations on complex molecules: The internal-coordinate multi-structural approximation,” Phys. Chem. Chem. Phys. 13, 1088510907 (2011).
http://dx.doi.org/10.1039/C0CP02644A
26.
J. Zheng, S. L. Mielke, K. L. Clarkson, and D. G. Truhlar, “MSTor: A program for calculating partition functions, free energies, enthalpies, entropies, and heat capacities of complex molecules including torsional anharmonicity,” Comput. Phys. Commun. 183, 18031812 (2012).
http://dx.doi.org/10.1016/j.cpc.2012.03.007
27.
J. Zheng and D. G. Truhlar, “Quantum thermochemistry: Multistructural method with torsional anharmonicity based on a coupled torsional potential,” J. Chem. Theory Comput. 9, 13561367 (2013).
http://dx.doi.org/10.1021/ct3010722
28.
J. Zheng and D. G. Truhlar, “Including torsional anharmonicity in canonical and microcanonical reaction path calculations,” J. Chem. Theory Comput. 9, 28752881 (2013).
http://dx.doi.org/10.1021/ct400231q
29.
J. Zheng, R. Meana-Pañeda, and D. G. Truhlar, “Prediction of experimentally unavailable product branching ratios for biofuel combustion: The role of anharmonicity in the reaction of isobutanol with OH,” J. Am. Chem. Soc. 136, 51505160 (2014).
http://dx.doi.org/10.1021/ja5011288
30.
D. A. McQuarrie and J. D. Simon, Molecular Thermodynamics (University Science books, Sausalito, CA, 1999).
31.
N. O’Boyle, T. Vandermeersch, C. Flynn, A. Maguire, and G. Hutchison, “Confab—Systematic generation of diverse low-energy conformers,” J. Cheminf. 3, 8 (2011).
http://dx.doi.org/10.1186/1758-2946-3-8
32.
N. M. O’Boyle, M. Banck, C. A. James, C. Morley, T. Vandermeersch, and G. R. Hutchison, “Open Babel: An open chemical toolbox,” J. Cheminf. 3, 33 (2011).
http://dx.doi.org/10.1186/1758-2946-3-33
33.
S. Kim, P. A. Thiessen, E. E. Bolton, J. Chen, G. Fu, A. Gindulyte, L. Han, J. He, S. He, B. A. Shoemaker, J. Wang, B. Yu, J. Zhang, and S. H. Bryant, “PubChem substance and compound databases,” Nucleic Acids Res. 44, D12021213 (2016).
http://dx.doi.org/10.1093/nar/gkv951
34.
R. L. Rowley, W. V. Wilding, J. L. Oscarson, Y. Yang, and N. F. Giles, Data Compilation of Pure Chemical Properties (Design Institute for Physical Properties, American Institute for Chemical Engineering, New York, 2012).
35.
H. H. Ku, “Notes on the use of propagation of error formulas,” J. Res. Natl. Bur. Stand., Sect. C 70C, 263273 (1966).
http://dx.doi.org/10.6028/jres.070c.025
36.
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, gaussian 09, Revision D.01, Gaussian, Inc., Wallingford, CT, 2009.
37.
C. Caleman, P. J. van Maaren, M. Hong, J. S. Hub, L. T. Costa, and D. van der Spoel, “Force field benchmark of organic liquids: Density, enthalpy of vaporization, heat capacities, surface tension, compressibility, expansion coefficient and dielectric constant,” J. Chem. Theory Comput. 8, 6174 (2012).
http://dx.doi.org/10.1021/ct200731v
38.
D. van der Spoel, P. J. van Maaren, and C. Caleman, “GROMACS molecule & liquid database,” Bioinformatics 28, 752753 (2012).
http://dx.doi.org/10.1093/bioinformatics/bts020
39.
N. M. Fischer, P. J. van Maaren, J. C. Ditz, A. Yildirim, and D. van der Spoel, “Properties of liquids in molecular dynamics simulations with explicit long-range Lennard Jones interactions,” J. Chem. Theory Comput. 11, 29382944 (2015).
http://dx.doi.org/10.1021/acs.jctc.5b00190
40.
D. R. Lide, CRC Handbook of Chemistry and Physics, 90th ed. (CRC Press, Cleveland, Ohio, 2009).
41.
C. L. Yaws, Yaws’ Handbook of Thermodynamic Properties for Hydrocarbons and Chemicals (Knovel, 2009), http://www.knovel.com.
42.
Thermophysical Properties of Pure Substances & Mixtures, DECHEMA Gesellschaft für Chemische Technik und Biotechnologie e.V., 2011, http://i-systems.dechema.de/detherm.
43.
C. L. Yaws, Yaws’ Critical Property Data for Chemical Engineers and Chemists (Knovel, 2012), http://www.knovel.com.
44.
L. A. Curtiss, K. Raghavachari, P. C. Redfern, and J. A. Pople, “Assessment of Gaussian-3 and density functional theories for a larger experimental test set,” J. Chem. Phys. 112, 73747383 (2000).
http://dx.doi.org/10.1063/1.481336
45.
L. A. Curtiss, P. C. Redfern, and K. Raghavachari, “Assessment of Gaussian-3 and density-functional theories on the G3/05 test set of experimental energies,” J. Chem. Phys. 123, 124107 (2005).
http://dx.doi.org/10.1063/1.2039080
46.
J. M. Martin, “Heats of formation of perchloric acid, HClO4, and perchloric anhydride, Cl2O7. Probing the limits of W1 and W2 theory,” J. Mol. Struct. 771, 1926 (2006).
http://dx.doi.org/10.1016/j.theochem.2006.03.035
47.
D. Raymand, A. C. van Duin, M. Baudin, and K. Hermansson, “A reactive force field (reaxff) for zinc oxide,” Surf. Sci. 602, 10201031 (2008).
http://dx.doi.org/10.1016/j.susc.2007.12.023
48.
A. Karton, S. Parthiban, and J. M. L. Martin, “Post-CCSD(T) ab initio thermochemistry of halogen oxides and related hydrides XOX, XOOX, HOX, XOn, and HXOn (X = F, Cl), and evaluation of DFT methods for these systems,” J. Phys. Chem. A 113, 48024816 (2009).
http://dx.doi.org/10.1021/jp8087435
49.
D. Trogolo and J. S. Arey, “Benchmark thermochemistry of chloramines, bromamines, and bromochloramines: Halogen oxidants stabilized by electron correlation,” Phys. Chem. Chem. Phys. 17, 35843598 (2015).
http://dx.doi.org/10.1039/C4CP03987D
50.
M. V. D. Silva, R. Custodio, and M. H. M. Reis, “Determination of enthalpies of formation of fatty acids and esters by density functional theory calculations with an empirical correction,” Ind. Eng. Chem. Res. 54, 95459549 (2015).
http://dx.doi.org/10.1021/acs.iecr.5b02580
51.
R. S. Berry, “Correlation of rates of intramolecular tunneling processes, with application to some Group V compounds,” J. Chem. Phys. 32, 933938 (1960).
http://dx.doi.org/10.1063/1.1730820
52.
P. Russegger and J. Brickmann, “Quantum states of intramolecular nuclear motion with large amplitudes: Pseudorotation of trigonal bipyramidal molecules,” J. Chem. Phys. 62, 10861093 (1975).
http://dx.doi.org/10.1063/1.430550
53.
A. Caligiana, V. Aquilanti, R. Burcl, N. C. Handy, and D. P. Tew, “Anharmonic frequencies and Berry pseudorotation motion in PF5,” Chem. Phys. Lett. 369, 335344 (2003).
http://dx.doi.org/10.1016/S0009-2614(02)02024-9
54.
J. E. Kilpatrick, K. S. Pitzer, and R. Spitzer, “The thermodynamics and molecular structure of cyclopentane,” J. Am. Chem. Soc. 69, 24832488 (1947).
http://dx.doi.org/10.1021/ja01202a069
55.
D. O. Harris, G. G. Engerholm, C. A. Tolman, A. C. Luntz, R. A. Keller, H. Kim, and W. D. Gwinn, “Ring puckering in five-membered rings. I. General theory,” J. Chem. Phys. 50, 24382445 (1969).
http://dx.doi.org/10.1063/1.1671400
56.
J. Zheng, T. Yu, and D. G. Truhlar, “Multi-structural thermodynamics of C–H bond dissociation in hexane and isohexane yielding seven isomeric hexyl radicals,” Phys. Chem. Chem. Phys. 13, 1931819324 (2011).
http://dx.doi.org/10.1039/C1CP21829H
57.
K. S. Pitzer and W. D. Gwinn, “Energy levels and thermodynamic functions for molecules with internal rotation. I. Rigid frame with attached tops,” J. Chem. Phys. 10, 428440 (1942).
http://dx.doi.org/10.1063/1.1723744
58.
K. S. Pitzer, “Energy levels and thermodynamic functions for molecules with internal rotation: II. Unsymmetrical tops attached to a rigid frame,” J. Chem. Phys. 14, 239243 (1946).
http://dx.doi.org/10.1063/1.1932193
59.
A. P. Scott and L. Radom, “Harmonic vibrational frequencies: An evaluation of Hartree-Fock, Møller-Plesset, quadratic configuration interaction, density functional theory, and semiempirical scale factors,” J. Phys. Chem. 100, 1650216513 (1996).
http://dx.doi.org/10.1021/jp960976r
60.
J. E. Mayer, S. Brunauer, and M. G. Mayer, “The entropy of polyatomic molecules and the symmetry number,” J. Am. Chem. Soc. 55, 3753 (1933).
http://dx.doi.org/10.1021/ja01328a004
61.
R. M. Dannenfelser, N. Surendran, and S. H. Yalkowsky, “Molecular symmetry and related properties,” SAR QSAR Environ. Res. 1, 273292 (1993).
http://dx.doi.org/10.1080/10629369308029892
62.
R.-M. Dannenfelser and S. H. Yalkowsky, “Estimation of entropy of melting from molecular structure: A non-group contribution method,” Ind. Eng. Chem. Res. 35, 14831486 (1996).
http://dx.doi.org/10.1021/ie940581z
63.
C. A. Wulff, “Determination of barrier heights from low-temperature heat-capacity data,” J. Chem. Phys. 39, 12271234 (1963).
http://dx.doi.org/10.1063/1.1734420
64.
A. D. Boese, M. Oren, O. Atasoylu, J. M. L. Martin, M. Kallay, and J. Gauss, “W3 theory: Robust computational thermochemistry in the kJ/mol accuracy range,” J. Chem. Phys. 120, 41294141 (2004).
http://dx.doi.org/10.1063/1.1638736
65.
L. Goerigk and S. Grimme, “A thorough benchmark of density functional methods for general main group thermochemistry, kinetics, and noncovalent interactions,” Phys. Chem. Chem. Phys. 13, 66706688 (2011).
http://dx.doi.org/10.1039/c0cp02984j
66.
E. E. Bolton, S. Kim, and S. H. Bryant, “PubChem3D: Conformer generation,” J. Cheminf. 3, 4 (2011).
http://dx.doi.org/10.1186/1758-2946-3-4
67.
A. Supady, V. Blum, and C. Baldauf, “First-principles molecular structure search with a genetic algorithm,” J. Chem. Inf. Model. 55, 23382348 (2015).
http://dx.doi.org/10.1021/acs.jcim.5b00243
68.
Y. Lu, Y. Liu, Z. Xu, H. Li, H. Liu, and W. Zhu, “Halogen bonding for rational drug design and new drug discovery,” Expert Opin. Drug Discovery 7, 375383 (2012).
http://dx.doi.org/10.1517/17460441.2012.678829
69.
P. Metrangolo, H. Neukirch, T. Pilati, and G. Resnati, “Halogen bonding based recognition processes: A world parallel to hydrogen bonding,” Acc. Chem. Res. 38, 386395 (2005).
http://dx.doi.org/10.1021/ar0400995
70.
P. Politzer, P. Lane, M. C. Concha, Y. Ma, and J. S. Murray, “An overview of halogen bonding,” J. Mol. Model. 13, 305311 (2007).
http://dx.doi.org/10.1007/s00894-006-0154-7
71.
S.-Y. Lu and I. Hamerton, “Recent developments in the chemistry of halogen-free flame retardant polymers,” Prog. Polym. Sci. 27, 16611712 (2002).
http://dx.doi.org/10.1016/S0079-6700(02)00018-7
http://aip.metastore.ingenta.com/content/aip/journal/jcp/145/11/10.1063/1.4962627
Loading
/content/aip/journal/jcp/145/11/10.1063/1.4962627
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/145/11/10.1063/1.4962627
2016-09-19
2016-12-10

Abstract

Large scale quantum calculations for molar enthalpy of formation 0), standard entropy ( 0), and heat capacity () are presented. A large data set may help to evaluate quantum thermochemistry tools in order to uncover possible hidden shortcomings and also to find experimental data that might need to be reinvestigated, indeed we list and annotate approximately 200 problematic thermochemistry measurements. Quantum methods systematically underestimate 0 for flexible molecules in the gas phase if only a single (minimum energy) conformation is taken into account. This problem can be tackled in principle by performing thermochemistry calculations for all stable conformations [Zheng , Phys. Chem. Chem. Phys. , 10885–10907 (2011)], but this is not practical for large molecules. We observe that the deviation of composite quantum thermochemistry recipes from experimental 0 corresponds roughly to the Boltzmann equation ( = RlnΩ), where R is the gas constant and Ω the number of possible conformations. This allows an empirical correction of the calculated entropy for molecules with multiple conformations. With the correction we find an RMSD from experiment of ≈13 J/mol K for 1273 compounds. This paper also provides predictions of Δ 0, 0, and for well over 700 compounds for which no experimental data could be found in the literature. Finally, in order to facilitate the analysis of thermodynamics properties by others we have implemented a new tool obthermo in the OpenBabel program suite [O’Boyle , J. Cheminf. , 33 (2011)] including a table of reference atomization energy values for popular thermochemistry methods.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/145/11/1.4962627.html;jsessionid=UhiUar172DVtCc4ihnXL-wTp.x-aip-live-02?itemId=/content/aip/journal/jcp/145/11/10.1063/1.4962627&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/145/11/10.1063/1.4962627&pageURL=http://scitation.aip.org/content/aip/journal/jcp/145/11/10.1063/1.4962627'
Right1,Right2,Right3,