Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/jcp/145/11/10.1063/1.4963082
1.
F. Coester, Nucl. Phys. 7, 421 (1958).
http://dx.doi.org/10.1016/0029-5582(58)90280-3
2.
J. Čížek, J. Chem. Phys. 45, 4256 (1966).
http://dx.doi.org/10.1063/1.1727484
3.
J. Paldus and X. Z. Li, Adv. Chem. Phys. 110, 1 (1999).
http://dx.doi.org/10.1002/9780470141694.ch1
4.
R. J. Bartlett and M. Musiał, Rev. Mod. Phys. 79, 291 (2007).
http://dx.doi.org/10.1103/RevModPhys.79.291
5.
I. Shavitt and R. J. Bartlett, Many-Body Methods in Chemistry and Physics (Cambridge University Press, New York, 2009), and references contained therein.
6.
J. P. F. LeBlanc, A. E. Antipov, F. Becca, I. W. Bulik, G. K.-L. Chan, C.-M. Chung, Y. Deng, M. Ferrero, T. M. Henderson, C. A. Jiménez-Hoyos, E. Kozik, X.-W. Liu, A. J. Millis, N. V. Prokof’ev, M. Qin, G. E. Scuseria, H. Shi, B. V. Svistunov, L. F. Tocchio, I. S. Tupitsyn, S. R. White, S. Zhang, B.-X. Zheng, Z. Zhu, and E. Gull, Phys. Rev. X 5, 041041 (2015).
http://dx.doi.org/10.1103/physrevx.5.041041
7.
P.-O. Löwdin, Phys. Rev. 97, 1509 (1955).
http://dx.doi.org/10.1103/PhysRev.97.1509
8.
P. Ring and P. Schuck, The Nuclear Many-Body Problem (Springer-Verlag, New York, NY, 1980).
9.
J.-P. Blaizot and G. Ripka, Quantum Theory of Finite Systems (The MIT Press, Cambridge, MA, 1985).
10.
K. Schmid, Prog. Part. Nucl. Phys. 52, 565 (2004).
http://dx.doi.org/10.1016/j.ppnp.2004.02.001
11.
G. E. Scuseria, C. A. Jiménez-Hoyos, T. M. Henderson, J. K. Ellis, and K. Samanta, J. Chem. Phys. 135, 124108 (2011).
http://dx.doi.org/10.1063/1.3643338
12.
C. A. Jiménez-Hoyos, T. M. Henderson, T. Tsuchimochi, and G. E. Scuseria, J. Chem. Phys. 136, 164109 (2012).
http://dx.doi.org/10.1063/1.4705280
13.
J. Hubbard, Proc. R. Soc. A 276, 238 (1963).
http://dx.doi.org/10.1098/rspa.1963.0204
14.
J. Paldus, M. Takahashi, and R. W. H. Cho, Phys. Rev. B 30, 4267 (1984).
http://dx.doi.org/10.1103/PhysRevB.30.4267
15.
P. Piecuch, S. Zarrabian, J. Paldus, and J. Čížek, Phys. Rev. B 42, 3351 (1990).
http://dx.doi.org/10.1103/PhysRevB.42.3351
16.
R. Rodríguez-Guzmán, K. W. Schmid, C. A. Jiménez-Hoyos, and G. E. Scuseria, Phys. Rev. B 85, 245130 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.245130
17.
R. Rodríguez-Guzmán, C. A. Jiménez-Hoyos, and G. E. Scuseria, Phys. Rev. B 90, 195110 (2014).
http://dx.doi.org/10.1103/PhysRevB.90.195110
18.
M. Degroote, T. M. Henderson, J. Zhao, J. Dukelsky, and G. E. Scuseria, Phys. Rev. B 93, 125124 (2016).
http://dx.doi.org/10.1103/PhysRevB.93.125124
19.
P. Piecuch, R. Tobo ła, and J. Paldus, Phys. Rev. A 54, 1210 (1996).
http://dx.doi.org/10.1103/PhysRevA.54.1210
20.
J. Arponen, Ann. Phys. 151, 311 (1983).
http://dx.doi.org/10.1016/0003-4916(83)90284-1
21.
P. Fan and P. Piecuch, Adv. Quantum Chem. 51, 1 (2006).
http://dx.doi.org/10.1016/S0065-3276(06)51001-9
22.
K. Kowalski and P. Piecuch, J. Chem. Phys. 113, 18 (2000).
http://dx.doi.org/10.1063/1.481769
23.
I. Mayer and M. Kertész, Int. J. Quantum Chem. 10, 961 (1976).
http://dx.doi.org/10.1002/qua.560100606
24.
O. Castaño and P. Karadakov, Chem. Phys. Lett. 130, 123 (1986).
http://dx.doi.org/10.1016/0009-2614(86)80438-9
25.
T. Duguet, J. Phys. G: Nucl. Part. Phys. 42, 025107 (2015).
http://dx.doi.org/10.1088/0954-3899/42/2/025107
http://aip.metastore.ingenta.com/content/aip/journal/jcp/145/11/10.1063/1.4963082
Loading
/content/aip/journal/jcp/145/11/10.1063/1.4963082
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/jcp/145/11/10.1063/1.4963082
2016-09-19
2016-12-08

Abstract

Spin-projected Hartree-Fock is written as a particle-hole excitation ansatz over a symmetry-adapted reference determinant. Remarkably, this expansion has an analytic expression that we were able to decipher. While the form of the polynomial expansion is universal, the excitation amplitudes need to be optimized. This is equivalent to the optimization of orbitals in the conventional projected Hartree-Fock framework of non-orthogonal determinants. Using the inverse of the particle-hole expansion, we similarity transform the Hamiltonian in a coupled-cluster style theory. The left eigenvector of the non-Hermitian Hamiltonian is constructed in a similar particle-hole expansion fashion, and we show that to numerically reproduce variational projected Hartree-Fock results, one needs as many pair excitations in the bra as the number of strongly correlated entangled pairs in the system. This single-excitation polynomial similarity transformation theory is an alternative to our recently presented double excitation theory, but supports projected Hartree-Fock and coupled cluster simultaneously rather than interpolating between them.

Loading

Full text loading...

/deliver/fulltext/aip/journal/jcp/145/11/1.4963082.html;jsessionid=P7QfxYEJvqT3EOAiw3vEWRUj.x-aip-live-06?itemId=/content/aip/journal/jcp/145/11/10.1063/1.4963082&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/jcp
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=jcp.aip.org/145/11/10.1063/1.4963082&pageURL=http://scitation.aip.org/content/aip/journal/jcp/145/11/10.1063/1.4963082'
Right1,Right2,Right3,